1. Tao, H., N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Optics Express, Vol. 16, No. 10, 7181-7188, 2008.
doi:10.1364/OE.16.007181 Google Scholar
2. Zakir, S., R. M. H. Bilal, M. A. Naveed, M. A. Baqir, M. U. A. Khan, M. M. Ali, M. A. Saeed, M. Q. Mehmood, and Y. Massoud, "Polarization-insensitive, broadband, and tunable terahertz absorber using slotted-square graphene meta-rings," IEEE Photonics Journal, Vol. 15, No. 1, 1-8, 2022.
doi:10.1109/JPHOT.2022.3229900 Google Scholar
3. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402 Google Scholar
4. Faruque, M. R. I., A. M. Siddiky, E. Ahamed, M. T. Islam, and S. Abdullah, "Parallel LC shaped metamaterial resonator for C and X band satellite applications with wider bandwidth," Scientific Reports, Vol. 11, No. 1, 1-15, 2021.
doi:10.1038/s41598-020-79139-8 Google Scholar
5. Ajewole, B., P. Kumar, and T. Afullo, "I-shaped metamaterial using SRR for multi-band wireless communication," Crystals, Vol. 12, No. 4, 559, 2022.
doi:10.3390/cryst12040559 Google Scholar
6. Wang, B.-X., C. Xu, G. Duan, J. Jiang, W. Xu, Z. Yang, and Y. Wu, "Miniaturized and actively tunable triple-band terahertz metamaterial absorber using an analogy I-typed resonator," Nanoscale Research Letters, Vol. 17, No. 1, 35, 2022.
doi:10.1186/s11671-022-03677-5 Google Scholar
7. Bilal, R. M. H., M. A. Baqir, P. K. Choudhury, M. Karaaslan, M. M. Ali, O. Alt lntas, A. A. Rahim, E. Unal, and C. Sabah, "Wideband microwave absorber comprising metallic split-ring resonators surrounded with E-shaped fractal metamaterial," IEEE Access, Vol. 9, 5670-5677, 2021.
doi:10.1109/ACCESS.2020.3048927 Google Scholar
8. Li, H., J. Wang, X. Wang, Y. Feng, and Z. Sun, "Design and characterization of wideband terahertz metamaterial stop-band filter," Micromachines, Vol. 13, No. 7, 1034, 2022.
doi:10.3390/mi13071034 Google Scholar
9. Guo, Q., Q. Peng, M. Qu, J. Su, and Z. Li, "Optical transparent metasurface for dual-band Wi-Fi shielding," Optics Express, Vol. 30, No. 5, 7793-7805, 2022.
doi:10.1364/OE.453357 Google Scholar
10. Srilatha, K., B. T. P. Madhav, A. B. Badisa, S. Das, S. K. Patel, and J. Parmar, "Conformal and polarization adjustable cloaking metasurface utilizing graphene with low radar cross section for terahertz applications," Optical and Quantum Electronics, Vol. 54, No. 7, 454, 2022.
doi:10.1007/s11082-022-03863-w Google Scholar
11. Dhama, R., B. Yan, C. Palego, and Z. Wang, "Super-resolution imaging by dielectric superlenses: TiO2 metamaterial superlens versus BaTiO3 superlens," Photonics, Vol. 8, No. 6, 222, MDPI, 2021.
doi:10.3390/photonics8060222 Google Scholar
12. Borhani-Kakhki, M. and T. A. Denidni, "Metamaterial enabled FSS for beam-tilting mm-Wave antenna applications," Handbook of Metamaterial-derived Frequency Selective Surfaces, 1-22, Springer Singapore, Singapore, 2022. Google Scholar
13. Yang, J. and Y.-S. Lin, "Design of tunable terahertz metamaterial sensor with single- and dual-resonance characteristic," Nanomaterials, Vol. 11, No. 9, 2212, 2021.
doi:10.3390/nano11092212 Google Scholar
14. Li, T. Y., L. Wang, J. M. Wang, S. Li, and X. J. He, "A dual band polarization-insensitive tunable absorber based on terahertz MEMS metamaterial," Integrated Ferroelectrics, Vol. 151, No. 1, 157-163, 2014.
doi:10.1080/10584587.2014.901115 Google Scholar
15. Al-Badri, K. S. L., A. Cinar, U. Kose, O. Ertan, and E. Ekmekci, "Monochromatic tuning of absorption strength based on angle-dependent closed-ring resonator-type metamaterial absorber," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1060-1063, 2016. Google Scholar
16. Chen, H., Z. Chen, H. Yang, L. Wen, Z. Yi, Z. Zhou, B. Dai, J. Zhang, X. Wu, and P. Wu, "Multi-mode surface plasmon resonance absorber based on dart-type single-layer graphene," RSC Advances, Vol. 12, No. 13, 7821-7829, 2022.
doi:10.1039/D2RA00611A Google Scholar
17. Jain, P., K. Prakash, G. M. Khanal, N. Sardana, S. Kumar, N. Gupta, and A. K. Singh, "Quad-band polarization sensitive terahertz metamaterial absorber using Gemini-shaped structure," Results in Optics, Vol. 8, 100254, 2022.
doi:10.1016/j.rio.2022.100254 Google Scholar
18. Asgari, S. and T. Fabritius, "Graphene-based multiband chiral metamaterial absorbers comprised of square split-ring resonator arrays with different numbers of gaps, and their equivalent circuit model," IEEE Access, Vol. 10, 63658-63671, 2022.
doi:10.1109/ACCESS.2022.3183272 Google Scholar
19. Feng, H., Z. Xu, K. Li, M. Wang, W. Xie, Q. Luo, B. Chen, W. Kong, and M. Yun, "Tunable polarization-independent and angle-insensitive broadband terahertz absorber with graphene metamaterials," Optics Express, Vol. 29, No. 5, 7158-7167, 2021.
doi:10.1364/OE.418865 Google Scholar
20. Huang, X., M. Cao, D. Q. Wang, X. Li, J. Fan, and X. Li, "Broadband polarization-insensitive and oblique-incidence terahertz metamaterial absorber with multi-layered graphene," Optical Materials Express, Vol. 12, No. 2, 811-822, 2022.
doi:10.1364/OME.451450 Google Scholar
21. Nejat, M. and N. Nozhat, "Design, theory, and circuit model of wideband, tunable and polarization-insensitive terahertz absorber based on graphene," IEEE Transactions on Nanotechnology, Vol. 18, 684-690, 2019.
doi:10.1109/TNANO.2019.2925964 Google Scholar
22. Nickpay, M. R., M. Danaie, and A. Shahzadi, "A wideband and polarization-insensitive graphene-based metamaterial absorber," Superlattices and Microstructures, Vol. 150, 106786, 2021.
doi:10.1016/j.spmi.2020.106786 Google Scholar
23. Norouzi-Razani, A. and P. Rezaei, "Broadband polarization insensitive and tunable terahertz metamaterial perfect absorber based on the graphene disk and square ribbon," Micro and Nanostructures, Vol. 163, 107153, 2022.
doi:10.1016/j.spmi.2022.107153 Google Scholar
24. Wang, B.-X., X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, "Design of a four-band and polarization-insensitive terahertz metamaterial absorber," IEEE Photonics Journal, Vol. 7, No. 1, 1-8, 2014. Google Scholar
25. Han, X., Z. Zhang, and X. Qu, "A novel miniaturized tri-band metamaterial THz absorber with angular and polarization stability," Optik, Vol. 228, 166086, 2021.
doi:10.1016/j.ijleo.2020.166086 Google Scholar