1. Michalski, K. A., "The mixed-potential electric field integral equation for objects in layered media," AEU --- Archiv fur Elektronik und Ubertragungstechnik, Vol. 39, 317-322, Sept./Oct. 1985. Google Scholar
2. Michalski, K. A. and D. Zheng, "Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, Part I: Theory," IEEE Transactions on Antennas and Propagation, Vol. 38, 335-344, Mar. 1990.
doi:10.1109/8.52240 Google Scholar
3. Hsu, C.-I. G., R. F. Harrington, K. A. Michalski, and D. Zheng, "Analysis of a multiconductor transmission lines of arbitrary cross-section in multilayered uniaxial media," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, 70-78, Jan. 1993.
doi:10.1109/22.210231 Google Scholar
4. Michalski, K. A. and J. R. Mosig, "Multilayered media Green's functions in integral equation formulations," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 508-519, Mar. 1997.
doi:10.1109/8.558666 Google Scholar
5. Vujevic, S., I. Krolo, and D. Lovric, "Frequency domain grounding grid analysis based on the finite element technique," 2019 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), 561-566, Split, Croatia, Sep. 2019. Google Scholar
6. Vujevic, S., I. Krolo, and D. Lovric, "Closed-form spectral-domain Green's functions for innitesimal current source in multilayer soil," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 6, 2814-2822, Dec. 2020.
doi:10.1109/TEMC.2020.2992552 Google Scholar
7. Vujevic, S., I. Krolo, and D. Lovric, "Closed-form spectral-domain Green's functions for innitesimal current source in multilayer soil" [Dec. 20 2814{2822]," IEEE Transactions on Electromagnetic Compatibility, Vol. 64, No. 3, 902-902, Jun. 2022.
doi:10.1109/TEMC.2022.3162896 Google Scholar
8. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, New York, 1990.
9. Dural, G. and M. I. Aksun, "Closed-form Green's functions for general sources in stratied media," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, 1545-1552, Jul. 1995. Google Scholar
10. Kinayman, N. and M. I. Aksun, Modern Microwave Circuits, Artech House, Boston, MA, 2005.
11. Patra, H. P. and K. Mallick, Geosounding Principles, 2: Time-varying Geoelectric Soundings, Elsevier, Amsterdam, 1980.
12. Michalski, K. A., "On the alternative vector potential formulation of the sommerfeld half-space problem," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 1, 54-57, Jan. 2018.
doi:10.1109/LAWP.2017.2773362 Google Scholar
13. Erteza, A. and B. K. Park, "Nonuniqueness of resolution of Hertz vector in presence of a boundary, and a horizontal dipole problem," IEEE Transactions on Antennas and Propagation, Vol. 17, 376-378, May 1969.
doi:10.1109/TAP.1969.1139438 Google Scholar
14. Michalski, K. A., "On the scalar potential of a point charge associated with a time-harmonic dipole in a layered medium," IEEE Transactions on Antennas and Propagation, Vol. 35, 1299-1301, Nov. 1987. Google Scholar
15. Michalski, K. A., "Extrapolation methods for Sommerfeld integral tails," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 10, 1405-1418, Oct. 1998.
doi:10.1109/8.725271 Google Scholar
16. Kaifas, T. N., "Direct rational function fitting method for accurate evaluation of sommerfeld integrals in stratied media," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 282-291, Jan. 2012.
doi:10.1109/TAP.2011.2167915 Google Scholar
17. Golubovic, R., A. G. Polimeridis, and J. R. Mosig, "Efficient algorithms for computing Sommerfeld integral tails," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2409-2417, May 2012.
doi:10.1109/TAP.2012.2189718 Google Scholar
18. Golubovic, R., A. G. Polimeridis, and J. R. Mosig, "The weighted averages method for semi-innite range integrals involving products of bessel functions," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 11, 5589-5596, Nov. 2013.
doi:10.1109/TAP.2013.2280048 Google Scholar
19. Michalski, K. A. and J. R. Mosig, "Efficient computation of Sommerfeld integral tails --- Methods and algorithms," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 3, 281-317, 2016.
doi:10.1080/09205071.2015.1129915 Google Scholar