1. Russel, P., "Photonic crystal fibers," Science, Vol. 299, No. 5605, 358-362, Jan. 2003.
doi:10.1126/science.1079280 Google Scholar
2. Vassallo, C., Optical Waveguide Concepts, Elsevier, Amsterdam, 1991.
3. Chiou, Y. P., Y. C. Chiang, C. H. Lai, C. H. Du, and H. C. Chang, "Finite difference modeling of dielectric waveguides with corners and slanted facets," Journal of Lightwave Technology, Vol. 27, No. 12, 2077-2086, Dec. 2009.
doi:10.1109/JLT.2008.2006862 Google Scholar
4. Brechet, F., J. Marcou, D. Pagnoux, and P. Roy, "Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method," Optical Fiber Technology, Vol. 6, 181-191, Apr. 2000.
doi:10.1006/ofte.1999.0320 Google Scholar
5. Selleri, S., L. Vincetti, L. A. Cucinotta, and M. Zoboli, "Complex FEM modal solver of optical waveguides with PML boundary conditions," Optical Quantum Electronics, Vol. 33, 359-371, 2001.
doi:10.1023/A:1010886632146 Google Scholar
6. Monro, T. M., D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, "Modeling large air fraction holey optical fibers," Journal of Lightwave Technology, Vol. 18, No. 1, 50-56, Jan. 2000.
doi:10.1109/50.818906 Google Scholar
7. Alivizatos, E. G., I. D. Chremmos, N. L. Tsitsas, and N. K. Uzunoglu, "Green's-function method for the analysis of propagation in holey fibers," Journal of Optical Society of America, Vol. 21, No. 5, 847-857, May 2004.
doi:10.1364/JOSAA.21.000847 Google Scholar
8. White, T. P., B. T. Kuhlmey, R. C. Mcphedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," Journal of Optical Society of America, Vol. 19, No. 10, 2322-2330, Oct. 2002.
doi:10.1364/JOSAB.19.002322 Google Scholar
9. Lu, W. and Y. Y. Lu, "Efficient boundary integral equation method for photonic crystal fibers," Journal of Lightwave Technology, Vol. 30, No. 11, 1610-1616, Jun. 2012.
doi:10.1109/JLT.2012.2189355 Google Scholar
10. Lu, W. and Y. Y. Lu, "Efficient high order waveguide mode solvers based on boundary integral equations," Journal of Computational Physics, Vol. 272, 507-525, Apr. 2014.
doi:10.1016/j.jcp.2014.04.028 Google Scholar
11. Song, J. and W. C. Chew, "Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering," Microwave and Optical Technology Letters, Vol. 10, 14-19, 1995.
doi:10.1002/mop.4650100107 Google Scholar
12. Bebendorf, M., "Approximation of boundary element matrices," Numerische Mathematik, Vol. 86, 565-589, 2000.
doi:10.1007/PL00005410 Google Scholar
13. Grasedyck, L. and W. Hackbusch, "Construction and arithmetics of H-matrices," Computing, Vol. 70, 295-334, 2003.
doi:10.1007/s00607-003-0019-1 Google Scholar
14. Beyn, W.-J., "An integral method for solving nonlinear eigenvalue problems," Linear Algebra and Its Applications, Vol. 436, No. 10, 3839-3863, 2012.
doi:10.1016/j.laa.2011.03.030 Google Scholar
15. Kress, R., "On the numerical solution of a hypersingular integral equation in scattering theory," Journal of Computational and Applied Mathematics, Vol. 61, 345-360, Jun. 1995.
doi:10.1016/0377-0427(94)00073-7 Google Scholar
16. Cheng, R., W. Y. Crutchfield, M. Doery, and L. Greengard, "Fast, accurate integral equation methods for the analysis of photonic crystal fibers. I: Theory," Optics Express, Vol. 12, No. 16, 3791-3805, 2004.
doi:10.1364/OPEX.12.003791 Google Scholar
17. Bebendorf, M., "Hierarchical matrices --- A means to efficiently solve elliptic boundary value problems," Lecture Notes in Computational Science and Engineering, Springer, 2008. Google Scholar
18. Bebendorf, M., "A hierarchical LU decomposition-based preconditioners for BEM," Computing, Vol. 74, 225-247, 2005.
doi:10.1007/s00607-004-0099-6 Google Scholar
19. Daquin, P., R. Perrussel, and J.-R. Poirier, "Hybrid cross approximation for the electric field integral equation," Progress In Electromagnetics Research M, Vol. 75, 79-90, 2018.
doi:10.2528/PIERM18052803 Google Scholar
20. Soudais, P., "Iterative solution of a 3-D scattering problem from arbitrary shaped multidielectric and multiconducting bodies," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 7, 954-959, Jul. 1994.
doi:10.1109/8.299597 Google Scholar