Vol. 101
Latest Volume
All Volumes
PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-07-15
A Uniform Additional Term Using Fock-Type Integral to Unify Edge Diffraction, Creeping Diffraction, and Reflection in Lit and Shadowed Regions
By
Progress In Electromagnetics Research B, Vol. 101, 101-117, 2023
Abstract
The uniform geometrical theory of diffraction (UTD) calculating edge diffraction, creeping diffraction, and reflection, has been widely used to predict the shadowing problems for the beyond 5th generation. The limitation of the previous work, which only discussed the relationship between edge diffraction and reflection in the lit region, has motivated the analysis of the difference between creeping diffraction and edge diffraction in the shadowed region. In this paper, as the difference between creeping diffraction and edge diffraction from a dielectric circular cylinder and an absorber screen, respectively, a novel additional term is derived based on the UTD in the shadowed region. In addition, a uniform additional term using the Fock-type integral is proposed to unify the formulations in the lit and shadowed regions. The proposed uniform additional term is validated by the UTD and exact solutions of a dielectric circular cylinder at millimeter-wave or sub-terahertz bands. From the discussion of the results, the proposal can not only unify the formulations in the lit and shadowed regions but also eliminate the fictitious interference. Through the proposal, we can separate the contribution of the shadowed Fresnel zone number (FZ) and boundary conditions (i.e., the surface impedance and polarization). The frequency characteristics of the shadowed FZ and boundary conditions are analyzed and simulated near a shadow boundary at a high frequency (10 GHz-100 GHz). The results imply that there is almost no dependency (less than 1 dB) on boundary conditions in the lit region while there are few dependencies (more than 1 dB) on boundary conditions in the shadowed region. This work attempts to unify three different propagation mechanisms, i.e., reflection, edge diffraction, and creeping diffraction, by using one formula.
Citation
Xin Du, and Jun-Ichi Takada, "A Uniform Additional Term Using Fock-Type Integral to Unify Edge Diffraction, Creeping Diffraction, and Reflection in Lit and Shadowed Regions," Progress In Electromagnetics Research B, Vol. 101, 101-117, 2023.
doi:10.2528/PIERB23041703
References

1. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, No. 11, 1448-1461, Nov. 1974.
doi:10.1109/PROC.1974.9651

2. Andersen, J. B., "UTD multiple-edge transition zone diffraction," IEEE Trans. Antennas Propag., Vol. 45, No. 7, 1093-1097, Jul. 1997.
doi:10.1109/8.596898

3. Pathak, P. H., W. Burnside, and R. Marhefka, "A uniform GTD analysis of the diffraction of electromagnetic waves by a smooth convex surface," IEEE Trans. Antennas Propag., Vol. 26, No. 5, 631-642, Sep. 1980.
doi:10.1109/TAP.1980.1142396

4. Pathak, P. H., "An asymptotic analysis of the scattering of plane waves by a smooth convex cylinder," Radio Science, Vol. 14, No. 3, 419-435, Jun. 1979.
doi:10.1029/RS014i003p00419

5. Pearson, L., "A scheme for automatic computation of Fock-type integrals," IEEE Trans. Antennas Propag., Vol. 35, No. 10, 1111-1118, Oct. 1987.
doi:10.1109/TAP.1987.1143985

6. Freund, D. E., N. E. Woods, H. Ku, and R. S. Awadallah, "Forward radar propagation over a rough sea surface: A numerical assessment of the Miller-brown approximation using a horizontally polarized 3-GHz line source," IEEE Trans. Antennas Propag., Vol. 54, No. 4, 1292-1304, Apr. 2006.
doi:10.1109/TAP.2006.872669

7. Dockery, G. D., R. S. Awadallah, D. E. Freund, J. Z. Gehman, and M. H. Newkirk, "An overview of recent advances for the TEMPER radar propagation model," 2007 IEEE Radar Conf., 896-905, 2007.
doi:10.1109/RADAR.2007.374338

8. Glaser, J. I., "Bistatic RCS of complex objects near forward scatter," IEEE Trans. Aerosp. Electron. Syst., Vol. 21, No. 1, 70-78, Jan. 1985.
doi:10.1109/TAES.1985.310540

9. Andrews, J. G., S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, "What will 5G be?," IEEE J. Sel. Areas Commun., Vol. 32, No. 6, 1065-1082, Jun. 2014.
doi:10.1109/JSAC.2014.2328098

10. Rangan, S., T. S. Rappaport, and E. Erkip, "Millimeter-wave cellular wireless networks: Potentials and challenges," Proc. IEEE, Vol. 102, No. 3, 366-385, Mar. 2014.
doi:10.1109/JPROC.2014.2299397

11. Dore, J. B., Y. Corre, S. Bicais, J. Palicot, E. Faussurier, D. Ktenas, and F. Bader, "Above -90 GHz spectrum and single-carrier waveform as enablers for efficient Tbit/s wireless communications," 2018 25th Inter. Conf. Telecom. (ICT), 274-278, Saint-Malo, France, 2018.

12. MacCartney, G. R., S. Deng, S. Sun, and T. S. Rappaport, "Millimeter-wave human blockage at 73 GHz with a simple double knife-edge diffraction model and extension for directional antennas," 2016 IEEE 84th Vehi. Tech. Conf. (VTC-Fall), 1-6, Montreal, QC, Canada, 2016.

13. Sun, S., T. S. Rappaport, R. W. Heath, A. Nix, and S. Rangan, "MIMO for millimeter-wave wireless communications: Beamforming, spatial multiplexing, or both?," IEEE Commun. Mag., Vol. 52, No. 12, 110-121, Dec. 2014.
doi:10.1109/MCOM.2014.6979962

14. Sun, S., G. R. MacCartney, M. K. Samimi, and T. S. Rappaport, "Synthesizing omnidirectional antenna patterns, received power and path loss from directional antennas for 5G millimeter-wave communications," Proc. IEEE Global Commun. Conf. (GLOBECOM), 3948-3953, San Diego, CA, USA, Dec. 2015.

15. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, Hoboken, New Jersey, USA, 1989.

16. Clemmow, P. C., "Some extension to the method of integration by steepest descent," Q. J. Mech., Appl. Math. III, 241-256, 1950.
doi:10.1093/qjmam/3.2.241

17. Osipov, A. V. and S. A. Tretyakov, Modern Electromagnetic Scattering Theory with Applications, 274-277, Hoboken, New Jersey, USA: Wiley, 2013.

18. Keller, J. B., "Geometric theory of diffraction," J. Opt. Soc. Am., Vol. 52, No. 2, 116-130, 1962.
doi:10.1364/JOSA.52.000116

19. Du, X., K. Saito, J. Takada, and P. Hanpinitsak, "A novel mirror Kirchhoff approximation method for predicting the shadowing effect by a metal cuboid," Progress In Electromagnetics Research M, Vol. 104, No. 18, 199-212, Sep. 2021.
doi:10.2528/PIERM21041306

20. Du, X. and J. Takada, "Mirror Kirchhoff approximation for predicting shadowing effect by a PEC convex cylinder," 2021 Appl. Computa. Electromagn. Soci., Hamilton, Canada, Aug. 2021.

21. Du, X. and J. Takada, "Low computational cost mirror Kirchhoff approximation for predicting shadowing effect," IEEE Access, Vol. 10, 23829-23841, Feb. 2022.
doi:10.1109/ACCESS.2022.3155547

22. Du, X. and J. Takada, "Design of parameters of fast Fourier transform for three-dimensional split step parabolic equations and mirror Kirchhoff approximation," IEEE Access, Vol. 11, 44964-44976, May 2023.
doi:10.1109/ACCESS.2023.3273783

23. Basdemir, H. D., "Nonuniform currents flowing on a perfectly conducting cylinder," 2011 XXXth URSI General Assembly and Scienti c Symposium, 1-4, Istanbul, Turkey, 2011.

24. Basdemir, H. D., "Fringe waves on an impedance cylinder," Optik, Vol. 124, No. 21, 4999-5002, 2013.
doi:10.1016/j.ijleo.2013.03.089

25. Qi, Y., B. Currie, W. Wang, P. Y. Chung, C. Wu, and J. Litva, "Measurement and simulation of radio wave propagation in two indoor environments," Proc. 6th Inter. Symp. Pers., 1171-1174, Toronto, Ontario, Canada, 1995.

26. Jacob, M., S. Priebe, A. Maltsev, A. Lomayev, V. Erceg, and T. Kurner, "A ray tracing based stochastic human blockage model for the IEEE 802.11ad 60 GHz channel model," Proc. 5th Euro. Conf. Antennas Propag. (EUCAP), 3084-3088, Rome, Italy, 2011.

27. Villanese, F., N. E. Evans, and W. G. Scanlon, "Pedestrian-induced fading for indoor channels at 2.45, 5.7 and 62 GHz," 2000 IEEE 52nd Vehi. Tech. Conf. (VTC-Fall), 43-48, Boston, MA, USA, 2000.

28. Fakharzadeh, M., J. Ahmadi-Shokouh, B. Biglarbegian, M. R. Nezhad-Ahmadi, and S. Safavi-Naeini, "The effect of the human body on indoor radio wave propagation at 57-64 GHz," 2009 IEEE Antennas Propag. Soc. Inter. Symp., 1-4, North Charleston, SC, USA, 2009.

29. Duarte Carvalho de Queiroz, A. and L. C. Trintinalia, "An analysis of human body shadowing models for ray-tracing radio channel characterization," 2015 SBMO/IEEE MTT-S Inter. Microwave Optoelectron. Conf. (IMOC), 1-5, Porto de Galinhas, Brazil, 2015.

30. Tang, C., "Back scattering from dielectric-coated in nite cylindrical obstacles," J. Appl. Phys., Vol. 28, No. 5, 628-633, 1957.
doi:10.1063/1.1722815

31. Jacob, M., S. Priebe, T. Kurner, M. Peter, M. Wisotzki, R. Felbecker, and W. Keusgen, "Fundamental analyses of 60 GHz human blockage," Proc. 7th Euro. Conf. Antennas Propag. (EuCAP), 117-121, Gothenburg, Sweden, 2013.

32. Du, X. and J. Takada, "Structure of the eld behind a dielectric circular cylinder in the lit side of the transition region," Progress In Electromagnetics Research M, Vol. 116, No. 9, 103-118, Apr. 2023.
doi:10.2528/PIERM23022307

33. U mtsev, P. Y., Fundamentals of the Physical Theory of Diffraction, 1-48, Wiley, Hoboken, New Jersey, 2013.

34. U mtsev, P. Y., "New insight into the classical Macdonald physical optics approximation," IEEE Trans. Antennas Propag., Vol. 50, No. 3, 11-20, Jun. 2008.
doi:10.1109/MAP.2008.4563560

35. Wu, T., T. S. Rappaport, and C. M. Collins, "The human body and millimeter-wave wireless communication systems: interactions and implications," 2015 IEEE Inter. Conf. Communi. (ICC), London, UK, 2015.