1. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, No. 11, 1448-1461, Nov. 1974.
doi:10.1109/PROC.1974.9651 Google Scholar
2. Andersen, J. B., "UTD multiple-edge transition zone diffraction," IEEE Trans. Antennas Propag., Vol. 45, No. 7, 1093-1097, Jul. 1997.
doi:10.1109/8.596898 Google Scholar
3. Pathak, P. H., W. Burnside, and R. Marhefka, "A uniform GTD analysis of the diffraction of electromagnetic waves by a smooth convex surface," IEEE Trans. Antennas Propag., Vol. 26, No. 5, 631-642, Sep. 1980.
doi:10.1109/TAP.1980.1142396 Google Scholar
4. Pathak, P. H., "An asymptotic analysis of the scattering of plane waves by a smooth convex cylinder," Radio Science, Vol. 14, No. 3, 419-435, Jun. 1979.
doi:10.1029/RS014i003p00419 Google Scholar
5. Pearson, L., "A scheme for automatic computation of Fock-type integrals," IEEE Trans. Antennas Propag., Vol. 35, No. 10, 1111-1118, Oct. 1987.
doi:10.1109/TAP.1987.1143985 Google Scholar
6. Freund, D. E., N. E. Woods, H. Ku, and R. S. Awadallah, "Forward radar propagation over a rough sea surface: A numerical assessment of the Miller-brown approximation using a horizontally polarized 3-GHz line source," IEEE Trans. Antennas Propag., Vol. 54, No. 4, 1292-1304, Apr. 2006.
doi:10.1109/TAP.2006.872669 Google Scholar
7. Dockery, G. D., R. S. Awadallah, D. E. Freund, J. Z. Gehman, and M. H. Newkirk, "An overview of recent advances for the TEMPER radar propagation model," 2007 IEEE Radar Conf., 896-905, 2007.
doi:10.1109/RADAR.2007.374338 Google Scholar
8. Glaser, J. I., "Bistatic RCS of complex objects near forward scatter," IEEE Trans. Aerosp. Electron. Syst., Vol. 21, No. 1, 70-78, Jan. 1985.
doi:10.1109/TAES.1985.310540 Google Scholar
9. Andrews, J. G., S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, "What will 5G be?," IEEE J. Sel. Areas Commun., Vol. 32, No. 6, 1065-1082, Jun. 2014.
doi:10.1109/JSAC.2014.2328098 Google Scholar
10. Rangan, S., T. S. Rappaport, and E. Erkip, "Millimeter-wave cellular wireless networks: Potentials and challenges," Proc. IEEE, Vol. 102, No. 3, 366-385, Mar. 2014.
doi:10.1109/JPROC.2014.2299397 Google Scholar
11. Dore, J. B., Y. Corre, S. Bicais, J. Palicot, E. Faussurier, D. Ktenas, and F. Bader, "Above -90 GHz spectrum and single-carrier waveform as enablers for efficient Tbit/s wireless communications," 2018 25th Inter. Conf. Telecom. (ICT), 274-278, Saint-Malo, France, 2018. Google Scholar
12. MacCartney, G. R., S. Deng, S. Sun, and T. S. Rappaport, "Millimeter-wave human blockage at 73 GHz with a simple double knife-edge diffraction model and extension for directional antennas," 2016 IEEE 84th Vehi. Tech. Conf. (VTC-Fall), 1-6, Montreal, QC, Canada, 2016. Google Scholar
13. Sun, S., T. S. Rappaport, R. W. Heath, A. Nix, and S. Rangan, "MIMO for millimeter-wave wireless communications: Beamforming, spatial multiplexing, or both?," IEEE Commun. Mag., Vol. 52, No. 12, 110-121, Dec. 2014.
doi:10.1109/MCOM.2014.6979962 Google Scholar
14. Sun, S., G. R. MacCartney, M. K. Samimi, and T. S. Rappaport, "Synthesizing omnidirectional antenna patterns, received power and path loss from directional antennas for 5G millimeter-wave communications," Proc. IEEE Global Commun. Conf. (GLOBECOM), 3948-3953, San Diego, CA, USA, Dec. 2015. Google Scholar
15. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, Hoboken, New Jersey, USA, 1989.
16. Clemmow, P. C., "Some extension to the method of integration by steepest descent," Q. J. Mech., Appl. Math. III, 241-256, 1950.
doi:10.1093/qjmam/3.2.241 Google Scholar
17. Osipov, A. V. and S. A. Tretyakov, Modern Electromagnetic Scattering Theory with Applications, 274-277, Hoboken, New Jersey, USA: Wiley, 2013.
18. Keller, J. B., "Geometric theory of diffraction," J. Opt. Soc. Am., Vol. 52, No. 2, 116-130, 1962.
doi:10.1364/JOSA.52.000116 Google Scholar
19. Du, X., K. Saito, J. Takada, and P. Hanpinitsak, "A novel mirror Kirchhoff approximation method for predicting the shadowing effect by a metal cuboid," Progress In Electromagnetics Research M, Vol. 104, No. 18, 199-212, Sep. 2021.
doi:10.2528/PIERM21041306 Google Scholar
20. Du, X. and J. Takada, "Mirror Kirchhoff approximation for predicting shadowing effect by a PEC convex cylinder," 2021 Appl. Computa. Electromagn. Soci., Hamilton, Canada, Aug. 2021. Google Scholar
21. Du, X. and J. Takada, "Low computational cost mirror Kirchhoff approximation for predicting shadowing effect," IEEE Access, Vol. 10, 23829-23841, Feb. 2022.
doi:10.1109/ACCESS.2022.3155547 Google Scholar
22. Du, X. and J. Takada, "Design of parameters of fast Fourier transform for three-dimensional split step parabolic equations and mirror Kirchhoff approximation," IEEE Access, Vol. 11, 44964-44976, May 2023.
doi:10.1109/ACCESS.2023.3273783 Google Scholar
23. Basdemir, H. D., "Nonuniform currents flowing on a perfectly conducting cylinder," 2011 XXXth URSI General Assembly and Scientic Symposium, 1-4, Istanbul, Turkey, 2011. Google Scholar
24. Basdemir, H. D., "Fringe waves on an impedance cylinder," Optik, Vol. 124, No. 21, 4999-5002, 2013.
doi:10.1016/j.ijleo.2013.03.089 Google Scholar
25. Qi, Y., B. Currie, W. Wang, P. Y. Chung, C. Wu, and J. Litva, "Measurement and simulation of radio wave propagation in two indoor environments," Proc. 6th Inter. Symp. Pers., 1171-1174, Toronto, Ontario, Canada, 1995. Google Scholar
26. Jacob, M., S. Priebe, A. Maltsev, A. Lomayev, V. Erceg, and T. Kurner, "A ray tracing based stochastic human blockage model for the IEEE 802.11ad 60 GHz channel model," Proc. 5th Euro. Conf. Antennas Propag. (EUCAP), 3084-3088, Rome, Italy, 2011. Google Scholar
27. Villanese, F., N. E. Evans, and W. G. Scanlon, "Pedestrian-induced fading for indoor channels at 2.45, 5.7 and 62 GHz," 2000 IEEE 52nd Vehi. Tech. Conf. (VTC-Fall), 43-48, Boston, MA, USA, 2000. Google Scholar
28. Fakharzadeh, M., J. Ahmadi-Shokouh, B. Biglarbegian, M. R. Nezhad-Ahmadi, and S. Safavi-Naeini, "The effect of the human body on indoor radio wave propagation at 57-64 GHz," 2009 IEEE Antennas Propag. Soc. Inter. Symp., 1-4, North Charleston, SC, USA, 2009. Google Scholar
29. Duarte Carvalho de Queiroz, A. and L. C. Trintinalia, "An analysis of human body shadowing models for ray-tracing radio channel characterization," 2015 SBMO/IEEE MTT-S Inter. Microwave Optoelectron. Conf. (IMOC), 1-5, Porto de Galinhas, Brazil, 2015. Google Scholar
30. Tang, C., "Back scattering from dielectric-coated innite cylindrical obstacles," J. Appl. Phys., Vol. 28, No. 5, 628-633, 1957.
doi:10.1063/1.1722815 Google Scholar
31. Jacob, M., S. Priebe, T. Kurner, M. Peter, M. Wisotzki, R. Felbecker, and W. Keusgen, "Fundamental analyses of 60 GHz human blockage," Proc. 7th Euro. Conf. Antennas Propag. (EuCAP), 117-121, Gothenburg, Sweden, 2013. Google Scholar
32. Du, X. and J. Takada, "Structure of the eld behind a dielectric circular cylinder in the lit side of the transition region," Progress In Electromagnetics Research M, Vol. 116, No. 9, 103-118, Apr. 2023.
doi:10.2528/PIERM23022307 Google Scholar
33. Umtsev, P. Y., Fundamentals of the Physical Theory of Diffraction, 1-48, Wiley, Hoboken, New Jersey, 2013.
34. Umtsev, P. Y., "New insight into the classical Macdonald physical optics approximation," IEEE Trans. Antennas Propag., Vol. 50, No. 3, 11-20, Jun. 2008.
doi:10.1109/MAP.2008.4563560 Google Scholar
35. Wu, T., T. S. Rappaport, and C. M. Collins, "The human body and millimeter-wave wireless communication systems: interactions and implications," 2015 IEEE Inter. Conf. Communi. (ICC), London, UK, 2015. Google Scholar