Vol. 112
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-08-15
A Wideband Harmonic Suppression Filtering Antenna with Multiple Radiation Nulls
By
Progress In Electromagnetics Research Letters, Vol. 112, 17-25, 2023
Abstract
In this paper, a wide harmonic suppression filtering antenna with high selectivity is designed. The filtering antenna adopts dual-layer structures. By introducing four parasitic patches around the top driven patch, the impedance bandwidth is widened. Moreover, the current directions on the driven patch and the parasitic patches are opposite in some frequency, so that the radiation null is introduced. In addition, a rectangular split ring DGS is etched in the middle of the ground plane, the lower sideband radiation null is introduced. Two sets of dumbbell-shaped defected ground structures are etched on the ground plane of the intermediate layer. The high-order harmonics are suppressed, and another radiation null is introduced. The experimental results show that the antenna operates at 2.46-2.66 GHz; the relative bandwidth is 7.8%; the peak gain is 3.8 dBi; and the S11 is more than -3 dB at 3-13 GHz.
Citation
Xinwei Chen, Qihao Zhuge, Guorui Han, Runbo Ma, Jinrong Su, and Wenmei Zhang, "A Wideband Harmonic Suppression Filtering Antenna with Multiple Radiation Nulls," Progress In Electromagnetics Research Letters, Vol. 112, 17-25, 2023.
doi:10.2528/PIERL23042801
References

1. Choudhary, D. K. and R. K. Chaudhary, "Compact filtering antenna using asymmetric CPW-fed based CRLH structure," International Journal of Electronics and Communications, Vol. 126, No. 6, 153462, 2020.
doi:10.1016/j.aeue.2020.153462

2. Jin, J. Y., S. Liao, and Q. Xue, "Design of filtering-radiating patch antennas with tunable radiation nulls for high selectivity," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 4, 2125-2130, 2018.
doi:10.1109/TAP.2018.2804661

3. Zhang, Y., W. Yang, W. Che, et al. "A wideband filtering patch antenna with multiple radiation nulls for good stopband suppression," 2019 IEEE MTT-S International Wireless Symposium (IWS), 1-3, IEEE, 2019.

4. Yang, W., Y. Zhang, W. Che, et al. "A simple, compact filtering patch antenna based on mode analysis with wide out-of-band suppression," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 10, 6244-6253, 2019.
doi:10.1109/TAP.2019.2922770

5. Qin, K., F. Fan, and L. Wang, "Compact planar wideband filtering antenna with stopband suppression by loading defected ground structure," 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, 2020.

6. Guan, X., W. Liu, B. Ren, et al. "A double-layer filtering antenna based on composite resonator with multiple radiation nulls," 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), 1-3, 2019.

7. Yang, D., H. Zhai, C. Guo, et al. "A compact single-layer wideband microstrip antenna with filtering performance," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 5, 801-805, 2020.
doi:10.1109/LAWP.2020.2980631

8. Liu, P., W. Jiang, Y. Xi, et al. "Wideband omnidirectional filtering antenna with CSRR loading," 2019 IEEE Asia-Pacific Microwave Conference (APMC), 1197-1199, 2020.

9. Liu, P., W. Jiang, W. Hu, et al. "Wideband multi-mode filtering circular patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 11, 7249-7259, 2021.
doi:10.1109/TAP.2021.3070717

10. Zhang, X. Y., W. Duan, and Y. M. Pan, "High-gain filtering patch antenna without extra circuit," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5883-5888, 2017.
doi:10.1109/TAP.2015.2481484

11. Liu, G., Y. M. Pan, and X. Y. Zhang, "Compact filtering patch antenna arrays for marine communications," IEEE Transactions on Vehicular Technology, Vol. 69, No. 10, 11408-11418, 2020.
doi:10.1109/TVT.2020.3010531

12. Choudhary, D. K., N. Mishra, P. K. Singh, and A. Sharma, "Miniaturized power divider with triple-band filtering response using coupled line," IEEE Access, Vol. 11, 27602-27608, 2023.
doi:10.1109/ACCESS.2023.3257985

13. Wen, L. H., S. Gao, Q. Luo, et al. "A wideband differentially fed dual-polarized antenna with wideband harmonic suppression," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 9, 6176-6181, 2019.
doi:10.1109/TAP.2019.2920230

14. Fan, J., F. Qin, J. Lin, et al. "Ultra-wideband harmonic suppression of microstrip antennas using compact defected ground structure," 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 1-3, IEEE, 2020.

15. Chen, C. C., S. Y. Huang, X. Y. Zhang, et al. "Microstrip-fed circular ring-slot antennas with very wideband harmonic suppression," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2295-2299, 2020.
doi:10.1109/LAWP.2020.3030724

16. Qian, J. F. and F. C. Chen, "A multi-mode resonator-fed broadband patch antenna with improved selectivity and harmonic suppression," 2018 Asia-Pacific Microwave Conference (APMC), 1594-1596, 2018.
doi:10.23919/APMC.2018.8617404

17. Yuan, H. and F. C. Chen, "A novel filtering patch antenna with wide stopband and improved selectivity," 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, 2020.

18. Hou, R., J. Ren, M. Zuo, et al. "Magnetoelectric dipole filtering antenna based on CSRR with third harmonic suppression," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 7, 1337-1341, 2021.
doi:10.1109/LAWP.2021.3080037