1. Dogaru, T. V., B. R. Phelan, and C. D. Kelly, "Analysis of buried target and clutter signature in ground penetrating radar imaging," Proc. SPIE 12108, Radar Sensor Technology XXVI, Vol. 12108, 1210804, Orlando, FL, USA, SPIE, Bellingham, WA, April 3-7, 2022. Google Scholar
2. Bradley, M. R., T. R. Witten, R. McCummins, M. Crowe, S. Stewart, and M. Duncan, "Mine detection with a multichannel stepped-frequency ground-penetrating radar," Proc. SPIE 3710, Detection and Remediation Technologies for Mines and Minelike Targets IV, Vol. 3710, 953-960, Orlando, FL, USA, SPIE, Bellingham, WA, April 5-9, 1999.
doi:10.1117/12.357115 Google Scholar
3. Bradley, M. R., T. R. Witten, R. McCummins, M. Duncan, M. Crowe, and S. Stewart, "Mine detection with a ground-penetrating synthetic aperture radar," Proc. SPIE 4038, Detection and Remediation Technologies for Mines and Minelike Targets V, Vol. 4038, 1001-1007, Orlando, FL, USA, SPIE, Bellingham, WA, April 24-28, 2000.
doi:10.1117/12.396185 Google Scholar
4. Bradley, M. R., T. R. Witten, R. McCummins, and M. Duncan, "Mine detection with ground penetrating synthetic aperture radar," Proc. SPIE 4742, Detection and Remediation Technologies for Mines and Minelike Targets VII, Vol. 4742, 248-258, Orlando, FL, USA, SPIE, Bellingham, WA, April 1-5, 2002.
doi:10.1117/12.479095 Google Scholar
5. Chambers, D. H., D. W. Paglieroni, J. E. Mast, and N. R. Beer, Real-time vehicle-mounted multistatic ground penetrating radar imaging system for buried object detection, Report LLNL-TR-615452, Lawrence Livermore National Laboratories, USA, January 2013.
6. Paglieroni, D. W., D. H. Chambers, J. E. Mast, S. W. Bond, and N. R. Beer, "Imaging modes for ground penetrating radar and their relation to detection performance," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 8, No. 3, 1132-1144, 2015.
doi:10.1109/JSTARS.2014.2357718 Google Scholar
7. Kositsky, J. and P. Milanfar, "Forward-looking high-resolution GPR system," Proc. SPIE 3710, Detection and Remediation Technologies for Mines and Minelike Targets IV, Vol. 3710, 1052-1062, Orlando, FL, USA, SPIE, Bellingham, WA, April 5-9, 1999. Google Scholar
8. Kositsky, J. and C. A. Amazeen, "Results from a forward-looking GPR mine detection system," Proc. SPIE 4394, Detection and Remediation Technologies for Mines and Minelike Targets VI, Vol. 4394, 700-711, Orlando. Google Scholar
9. Bradley, M. R., T. R. Witten, M. Duncan, and R. McCummins, "Mine detection with a forward-looking ground-penetrating synthetic aperture radar," Proc. SPIE 5089, Detection and Remediation Technologies for Mines and Minelike Targets VIII, Vol. 5089, 334-347, Orlando, FL, USA, SPIE, Bellingham, WA, April 21-25, 2003. Google Scholar
10. Bradley, M. R., T. R. Witten, M. Duncan, and R. McCummins, "Anti-tank and side-attack mine detection with a forward-looking GPR," Proc. SPIE 5415, Detection and Remediation Technologies for Mines and Minelike Targets IX, Vol. 5415, 421-432, Orlando, FL, USA, SPIE, Bellingham, WA, April 12-16, 2004. Google Scholar
11. Ressler, M., L. Nguyen, F. Koenig, D. Wong, and G. Smith, "The Army Research Laboratory (ARL) synchronous impulse reconstruction (SIRE) forward-looking radar," Proc. SPIE 6561, Unmanned Systems Technology IX, Vol. 6561, Article ID 656105, Orlando, FL, USA, SPIE, Bellingham, WA, April 9-13, 2007. Google Scholar
12. Phelan, B. R., K. I. Ranney, K. A. Gallagher, J. T. Clark, K. D. Sherbondy, and R. M. Narayanan, "Design of ultrawideband stepped-frequency radar for imaging of obscured targets," IEEE Sensors Journal, Vol. 17, No. 14, 4435-4446, 2017.
doi:10.1109/JSEN.2017.2707340 Google Scholar
13. Ulander, L. M. H., et al., "Analysis of CARABAS VHF SAR data from BALTASAR-96," IGARSS'97, 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing --- A Scientific Vision for Sustainable Development, Vol. 2, 797-799, Singapore, IEEE, Piscataway, NJ, August 3-8, 1997. Google Scholar
14. Gasson, J., D. Hughes, M. Poulter, and G. Crisp, "Development of an ultra wide-band SAR for minefield detection," IEEE 1999 International Geoscience and Remote Sensing Symposium, IGARSS'99 (Cat. No.99CH36293), Vol. 5, 2474-2476, Hamburg, Germany, IEEE, Piscataway, NJ, June 28-July 2, 1999. Google Scholar
15. Aubry, W. M., et al., "Airborne sensor concept to image shallow-buried targets," Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322), 233-236, Long Beach, CA, USA, IEEE, Piscataway, NJ, April 25, 2002. Google Scholar
16. Le Goff, M., R. Guillerey, F. Gallais, J. Andrieu, B. Beillard, and B. Jecko, "Ultra wide band synthetic aperture radar for the detection of mined areas," RADAR 2002, 526-530, Edinburgh, UK, IEEE, Piscataway, NJ, October 15-17, 2002. Google Scholar
17. Schleijpen, H. M. A., "Landmine detection technology research programme at TNO," Proceedings of the 2nd International Workshop on Advanced Ground Penetrating Radar, 2003, 138-143, Delft, Netherlands, IEEE, Piscataway, NJ, May 14-16, 2003. Google Scholar
18. Moussally, G., K. Breiter, and J. Rolig, "Wide-area landmine survey and detection system," Proceedings of the Tenth International Conference on Grounds Penetrating Radar, 2004, GPR 2004, 693-696, Delft, Netherlands, IEEE, Piscataway, NJ, June 21-24, 2004. Google Scholar
19. Fasano, G., A. Renga, A. R. Vetrella, G. Ludeno, I. Catapano, and F. Soldovieri, "Proof of concept of micro-UAV-based radar imaging," 2017 International Conference on Unmanned Aircraft Systems (ICUAS), 1316-1323, Miami, FL, USA, IEEE, Piscataway, NJ, June 13-16, 2017. Google Scholar
20. Garcia Fernandez, M., et al., "Synthetic aperture radar imaging system for landmine detection using a ground penetrating radar on board a unmanned aerial vehicle," IEEE Access, Vol. 6, 45100-45112, 2018.
doi:10.1109/ACCESS.2018.2863572 Google Scholar
21. Garcia Fernandez, M., Y. A. Lopez, and F. L. Andrees, "Airborne multi-channel ground penetrating radar for improvised explosive devices and landmine detection," IEEE Access, Vol. 8, 165927-165943, 2020.
doi:10.1109/ACCESS.2020.3022624 Google Scholar
22. Schartel, M., R. Burr, W. Mayer, N. Docci, and C. Waldschmidt, "UAV-based ground penetrating synthetic aperture radar," 2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), 1-4, Munich, Germany, IEEE, Piscataway, NJ, April 15-17, 2018. Google Scholar
23. Dill, S., E. Schreiber, M. Engel, A. Heinzel, and M. Peichl, "A drone carried multichannel synthetic aperture radar for advanced buried object detection," 2019 IEEE Radar Conference (RadarConf.), 1-6, Boston, MA, USA, IEEE, Piscataway, NJ, April 22-26, 2019. Google Scholar
24. Richards, M. A., Principles of Modern Radar, Vol 1: Basic Principles, SciTech Publishing, Inc., 2010.
doi:10.1049/SBRA021E
25. Dogaru, T. V., Performance analysis of side-looking ground penetrating radar imaging, Report ARL-TR-9388, Army Research Laboratory, USA, January 2022.
26. Dogaru, T., AFDTD user's manual, Report ARL-TR-5145, Army Research Laboratory, USA, March 2010.