1. Allen, L., M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Physical Review. A, Atomic, Molecular, and Optical Physics, Vol. 45, No. 11, 8185-8189, 1992 (in English).
doi:10.1103/PhysRevA.45.8185 Google Scholar
2. Thide, B., et al., "Utilization of photon orbital angular momentum in the low-frequency radio domain," Physical Review Letters, Vol. 99, No. 8, 087701, 2007 (in English).
doi:10.1103/PhysRevLett.99.087701 Google Scholar
3. Wang, Y., X. Sun, and L. Liu, "A concentric array for generating multimode OAM waves," Journal of Communications and Information Networks, Vol. 7, No. 3, 324-332, 2022.
doi:10.23919/JCIN.2022.9906945 Google Scholar
4. Tamburini, F., E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, "Encoding many channels on the same frequency through radio vorticity: First experimental test," New Journal of Physics, Vol. 14, No. 3, 033001, 2012.
doi:10.1088/1367-2630/14/3/033001 Google Scholar
5. Yu, Z., L. Shi, and Z. Xin, "Polarization conversion and OAM generation with a single transmitting metasurface," Progress In Electromagnetics Research M, Vol. 115, 129-140, 2023.
doi:10.2528/PIERM23012301 Google Scholar
6. Deng, C. J., W. H. Chen, Z. J. Zhang, Y. Li, and Z. H. Feng, "Generation of OAM radio waves using circular vivaldi antenna array," International Journal of Antennas and Propagation, Vol. 2013, Art. No. 847859, 2013. Google Scholar
7. Liang, J. and S. Zhang, "Orbital Angular Momentum (OAM) generation by cylinder dielectric resonator antenna for future wireless communications," IEEE Access, Vol. 14, No. 8, 9570-9574, Aug. 2016.
doi:10.1109/ACCESS.2016.2636166 Google Scholar
8. Ren, J. and K. W. Leung, "Generation of microwave orbital angular momentum states using hemispherical dielectric resonator antenna," Applied Physics Letters, Vol. 112, No. 13, 131103, Mar. 2018.
doi:10.1063/1.5021951 Google Scholar
9. Aayesha, M. B. Q., M. Afzaal, M. Shuaib Qureshi, and J. Gwak, "Ultra-wideband annular ring fed rectangular dielectric resonator antenna for millimeter wave 5G applications," Computers, Materials & Continua, Vol. 71, No. 1, 1331-1348, 2022.
doi:10.32604/cmc.2022.022041 Google Scholar
10. Singh, R. P. and P. G. Poonacha, "Survey of techniques for achieving topological diversity," IEEE Communications, 1-5, 2013. Google Scholar
11. Jack, B., M. J. Padgett, and S. Franke-Arnold, "Angular diffraction," New Journal of Physics, Vol. 10, No. 10, 103013, 2008.
doi:10.1088/1367-2630/10/10/103013 Google Scholar
12. Yu, Z., Q. Gao, B. He, and L. Guo, "Effects of concentration, temperature and geometry on double spiral liquid orbital angular momentum antenna," IEEE Antennas and Wireless Propagation Letters, 1-1, 2021. Google Scholar
13. Shen, F., J. Mu, K. Guo, S. Wang, and Z. Guo, "Generation of continuously variable-mode vortex electromagnetic waves with three-dimensional helical antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 6, 1091-1095, 2019.
doi:10.1109/LAWP.2019.2907931 Google Scholar
14. Yang, Z., J. Zhou, L. Kang, B. Liu, G. Yang, and X. Shi, "A closed-loop cross-dipole antenna array for wideband OAM communication," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2492-2496, 2020.
doi:10.1109/LAWP.2020.3036929 Google Scholar
15. Wu, J., Z. X. Zhang, X. G. Ren, Z. X. Huang, and X. L. Wu, "A broadband electronically mode-reconfigurable orbital angular momentum metasurface antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1482-1486, 2019.
doi:10.1109/LAWP.2019.2920695 Google Scholar