1. Jeong, H., Y. Noh, and D. Lee, "Highly stable and sensitive resistive flexible humidity sensors by means of roll-to-roll printed electrodes and flower-like TiO2 nanostructures," Ceramics International, Vol. 45, No. 1, 985-992, 2019.
doi:10.1016/j.ceramint.2018.09.276 Google Scholar
2. Bi, H., K. Yin, X. Xie, J. Ji, S.Wan, L. Sun, and M. S. Dresselhaus, "Ultrahigh humidity sensitivity of graphene oxide," Scientific Reports, Vol. 3, No. 1, 2714, 2013.
doi:10.1038/srep02714 Google Scholar
3. Liu, J. H., L. D. Du, J. Jin, Z. Fang, and Z. Zhao, "Improvement of the microcapacitive humidity sensor by the package optimization," Micro & Nano Letters, Vol. 15, No. 3, 145-148, 2020.
doi:10.1049/mnl.2019.0422 Google Scholar
4. Kim, J., J. H. Cho, H. M. Lee, and S. M. Hong, "Capacitive humidity sensor based on carbon black/polyimide composites," Sensors, Vol. 21, No. 6, 1947, 2021.
doi:10.3390/s21061947 Google Scholar
5. Smith, A. D., K. Elgammal, F. Niklaus, A. Delin, A. C. Fischer, S. Vaziri, and M. C. Lemme, "Resistive graphene humidity sensors with rapid and direct electrical readout," Nanoscale, Vol. 7, No. 45, 19099-19109, 2015.
doi:10.1039/C5NR06038A Google Scholar
6. Packirisamy, M., I. Stiharu, X. Li, and G. Rinaldi, "A polyimide based resistive humidity sensor," Sensor Review, Vol. 25, No. 4, 271-276, 2005.
doi:10.1108/02602280510620123 Google Scholar
7. Borgese, M., F. A. Dicandia, F. Costa, S. Genovesi, and G. Manara, "An inkjet printed chipless RFID sensor for wireless humidity monitoring," IEEE Sens. J., Vol. 17, No. 15, 4699-4707, 2017.
doi:10.1109/JSEN.2017.2712190 Google Scholar
8. Abbasi, Z., M. Baghelani, and M. Daneshmand, "Zero power consumption chipless distant microwave moisture sensor for smart home applications," Proc. IEEE Sensors, 1-4, Montreal, Canada, October 2019. Google Scholar
9. Bagchi, S., A. Shakouri, R. Rahimi, N. Raghunathan, and J. F. Waimin, "Battery-less wireless chipless sensor tag for subsoil moisture monitoring," IEEE Sens. J., Vol. 21, No. 5, 6071-6082, 2020. Google Scholar
10. Yao, Y., H. Zhang, J. Sun, W. Y. Ma, L. Li, W. Z. Li, and J. Du, "Novel QCM humidity sensors using stacked black phosphorus nanosheets as sensing film," Sensors Actuat. B: Chem., Vol. 244, 259-264, 2017.
doi:10.1016/j.snb.2017.01.010 Google Scholar
11. Lu, D., Y. Zheng, A. Penirschke, and R. Jakoby, "Humidity sensors based on photolithographically patterned PVA films deposited on SAW resonators," IEEE Sens. J., Vol. 16, No. 1, 13-14, 2015.
doi:10.1109/JSEN.2015.2468082 Google Scholar
12. Zhang, Y., Y. Chen, Y. Zhang, H. Cong, B. Fu, S. Wen, and S. Ruan, "A novel humidity sensor based on NH2-MIL-125(Ti) metal organic framework with high responsiveness," J. Nanopart. Res., Vol. 15, 1-6, 2003. Google Scholar
13. Le, X. H., X. Y. Wang, J. T. Pang, Y. J. Liu, B. Fang, Z. Xu, C. Gao, Y. Xu, and J. Xie, "A high performance humidity sensor based on surface acoustic wave and graphene oxide on AlN/Si layered structure," Sensors Actuat. B: Chem., Vol. 255, 2454-2461, 2018.
doi:10.1016/j.snb.2017.09.038 Google Scholar
14. Cirmirakis, D., A. Demosthenous, N. Saeidi, and N. Donaldson, "Humidity-to-frequency sensor in CMOS technology with wireless readout," IEEE Sens. J., Vol. 13, No. 3, 900-908, 2012.
doi:10.1109/JSEN.2012.2217376 Google Scholar
15. Tan, Z. C., R. Daamen, A. Humbert, Y. V. Ponomarev, Y. Chae, and M. A. P. Pertijs, "A 1.2-V 8.3-nJ CMOS humidity sensor for RFID applications," IEEE J. Solid-St. Circ., Vol. 48, No. 10, 2469-2477, 2013.
doi:10.1109/JSSC.2013.2275661 Google Scholar
16. Deng, F. M., Y. G. He, C. L. Zhang, and W. Feng, "A CMOS humidity sensor for passive RFID sensing applications," Sensors, Vol. 14, No. 5, 8728-8739, 2014.
doi:10.3390/s140508728 Google Scholar
17. Deng, F. M., Y. G. He, B. Li, Y. Song, and X. Wu, "Design of a slotted chipless RFID humidity sensor tag," Sensor Actuat. B-Chem., Vol. 264, 255-262, 2018.
doi:10.1016/j.snb.2018.02.153 Google Scholar
18. Ali, A., S. I. Jafri, A. Habib, Y. Amin, and H. Tenhunen, "RFID humidity sensor tag for low-cost applications," Appl. Comput. Electrom. Society, Vol. 32, No. 12, 1083-1088, 2017. Google Scholar
19. Raju, R. and G. E. Bridges, "Radar cross section-based chipless tag with built-in reference for relative humidity monitoring of packaged food commodities," IEEE Sens. J., Vol. 21, No. 117, 18773-18780, 2021.
doi:10.1109/JSEN.2021.3090367 Google Scholar
20. Komoda, N., T. Michisaka, and M. Kondo, "Novel sensing techniques of chipless RFID sensor for infrastructure," IEICE Commun. Expr., Vol. 9, No. 6, 244-249, 2020.
doi:10.1587/comex.2020XBL0014 Google Scholar
21. Habib, A., R. Asif, M. Fawwad, Y. Amin, J. Loo, and H. Tenhunen, "Directly printable compact chipless RFID tag for humidity sensing," IEICE Electron. Expr., Vol. 14, No. 10, 20170169-20170169, 2017.
doi:10.1587/elex.14.20170169 Google Scholar
22. Sumra, Z., H. Ayesha, S. J. Anum, A. Yasar, L. Jonathan, and T. Hannu, "Dual-polarized chipless humidity sensor tag," IEICE Electron. Expr., Vol. 14, No. 21, 20170926-20170926, 2017.
doi:10.1587/elex.14.20170926 Google Scholar
23. Anum Satti, J., A. Habib, H. Anam, S. Zeb, Y. Amin, J. Loo, and H. Tenhunen, "Miniaturized humidity and temperature sensing RFID enabled tags," Int. J. RF Microw. Comput. Aided Eng., Vol. 28, No. 1, e2115, 2017. Google Scholar
24. Feng, Y., L. Xie, Q. Chen, and L. R. Zheng, "Low-cost printed chipless RFID humidity sensor tag for intelligent packaging," IEEE Sens. J., Vol. 15, No. 6, 3201-3208, 2015.
doi:10.1109/JSEN.2014.2385154 Google Scholar
25. Zeb, S., A. Habib, Y. Amin, H. Tenhunen, and J. Loo, "Green electronic based chipless humidity sensor for IoT applications," 2018 IEEE Green Technologies Conference, 172-175, Austin, USA, April 2018. Google Scholar
26. Xie, M. Z., L. F. Wang, L. Dong, W. J. Deng, and Q. A. Huang, "Low cost paper-based LC wireless humidity sensors and distance-insensitive readout system," IEEE Sens. J., Vol. 19, No. 12, 4717-4725, February 2019.
doi:10.1109/JSEN.2019.2901004 Google Scholar
27. Gaspar, C., J. Olkkonen, S. Passoja, and M. Smolander, "Paper as active layer in inkjet-printed capacitive humidity sensors," Sensors, Vol. 17, No. 7, 1464, 2017.
doi:10.3390/s17071464 Google Scholar
28. Barman, B., S. Bhaskar, and A. K. Singh, "Spiral resonator loaded S-shaped folded dipole dual band UHF RFID tag antenna," Microw. Opt. Technol. Lett., Vol. 61, No. 3, 720-726, 2019.
doi:10.1002/mop.31647 Google Scholar
29. Athauda, T. and N. C. Karmakar, "The realization of chipless RFID resonator for multiple physical parameter sensing," IEEE Internet Things, Vol. 6, No. 3, 5387-5396, 2019.
doi:10.1109/JIOT.2019.2901470 Google Scholar
30. Vena, A., E. Perret, and S. Tedjini, "High capaciy chipless RFID tag insensitive to the polarization," IEEE Trans. Microwave Theory Tech., Vol. 60, No. 10, 4509-4515, 2012. Google Scholar
31. Dissanayake, T. and K. P. Esselle, "Prediction of the notch frequency of slot loaded printed UWB antennas," IEEE Trans. Antennas Propag., Vol. 55, No. 11, 3320-3325, 2007.
doi:10.1109/TAP.2007.908792 Google Scholar
32. Vena, A., E. Perret, and S. Tedjini, "Chipless RFID based on RF encoding particle: Realization, coding, reading system," Remote Identification beyond RFID Set, 171-180, ISTE Press, London, UK; Elsevier, London, UK, August 2016. Google Scholar
33. Kok, Y. Y., Z. Abbas, K. Khalid, and M. Z. Rahman, "Improved dielectric model for polyvinyl alcohol-water hydrogel at microwave frequencies," Am. J. Appl. Sci., Vol. 7, No. 2, 270-276, 2010.
doi:10.3844/ajassp.2010.270.276 Google Scholar
34. Gevorgian, S., L. Linner, and E. L. Kollberg, "CAD models for shielded multilayered CPW," IEEE Trans. Microwave Theory Tech., Vol. 43, No. 4, 772-779, 1995.
doi:10.1109/22.375223 Google Scholar
35. Paul, D. R., "Water vapor sorption and diffusion in glassy polymers," Macromolecular Symposi, Vol. 138, No. 1, 13-20, WILEY-VCH Verlag GmbH & Co. KGaA,Weinheim, Germany, March 1999.
doi:10.1002/masy.19991380104 Google Scholar
36. Sengwa, R. J. and K. Kaur, "Dielectric dispersion studies of poly (vinyl alcohol) in aqueous solutions," Polym. Int., Vol. 49, No. 11, 1314-1320, 2000.
doi:10.1002/1097-0126(200011)49:11<1314::AID-PI479>3.0.CO;2-8 Google Scholar
37. Lu, D., Y. Zheng, A. Penirschke, A. Wiens, and R. Jakoby, "Humidity dependent permittivity characterization of polyvinyl-alcohol film and its application in relative humidity RF sensor," 2014 44th European Microwave Conference, 163-166, Rome, Italy, October 2014. Google Scholar