Vol. 102
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-08-01
A Parallel 3D Spatial Spectral Volume Integral Equation Method for Electromagnetic Scattering from Finite Scatterers
By
Progress In Electromagnetics Research B, Vol. 102, 1-17, 2023
Abstract
Parallel computing for the three-dimensional spatial spectral volume integral equation method is presented for the computation of electromagnetic scattering by finite dielectric scatterers in a layered medium. The first part exploits the Gabor-frame expansion to compute the Gabor coefficients of scatterers in a parellel manner. The second part concerns the decomposition and restructuring of the matrix-vector product of this spatial spectral volume integral equation into (partially) independent components to enable parallel computing. Both capitalize on the hardware to reduce the computation time by shared-memory parallelism. Numerical experiments in the form of solving electrically large scattering problems, namely volumes up to 1300 cubic wavelengths, in combination with a large number of finite scatterers show a significant reduction in wall-clock time owing to parallel computing, while maintaining accuracy.
Citation
Stefan Eijsvogel, Roeland Johannes Dilz, and Martijn Constant van Beurden, "A Parallel 3D Spatial Spectral Volume Integral Equation Method for Electromagnetic Scattering from Finite Scatterers," Progress In Electromagnetics Research B, Vol. 102, 1-17, 2023.
doi:10.2528/PIERB23060708
References

1. Rendon-Barraza, C., E. A. Chan, G. Yuan, G. Adamo, T. Pu, and N. I. Zheludev, "Deeply subwavelength non-contact optical metrology of sub-wavelength objects," APL Photonics, Vol. 6, 2021.
doi:10.1063/5.0048139        Google Scholar

2. Dasari, P., J. Li, J. Hu, Z. Liu, O. Kritsun, and C. Volkman, "Scatterometry metrology challenges of EUV," Proc. of SPIE, Vol. 8324, 83240M, 2012.
doi:10.1117/12.916006        Google Scholar

3. Ansuinelli, P., W. M. J. Coene, and H. P. Urbach, "Automatic feature selection in EUV scatterometry," Applied Optics, Vol. 58, No. 22, 5916-5923, 2019.
doi:10.1364/AO.58.005916        Google Scholar

4. Kumar, N., P. Petrik, G. K. P. Ramanandan, O. El Gawhary, S. Roy, S. F. Pereira, W. Coene, and H. Urbach, "Reconstruction of sub-wavelength features and nano-positioning of gratings using coherent Fourier scatterometry," Optics Express, Vol. 22, No. 20, 24678-24688, 2014.
doi:10.1364/OE.22.024678        Google Scholar

5. Gross, H., A. Rathsfeld, F. Scholze, and M. Bar, "Profile reconstruction in extreme ultraviolet (EUV) scatterometry: Modeling and uncertainty estimates," Meas. Sci. Technol., Vol. 20, No. 10, 105102, 2009.
doi:10.1088/0957-0233/20/10/105102        Google Scholar

6. Dilz, R. J., M. G. M. M. van Kraaij, and M. C. van Beurden, "A 3D spatial spectral integral equation method for electromagnetic scattering from finite objects in a layered medium," Opt. Quant. Electron., Vol. 50, No. 206, 2018.        Google Scholar

7. Dilz, R. J., A spatial spectral domain integral equation solver for electromagnetic scattering dielectric layered media, Ph.D. Dissertation, Eindhoven University of Technology, 2017.

8. Gohberg, I. and I. Koltracht, "Numerical solution of integral equations, fast algorithms and Krein- Sobolev equation," Numerical Mathematics, Vol. 47, No. 2, 237-288, 1985.
doi:10.1007/BF01389711        Google Scholar

9. Eijsvogel, S., L. Sun, F. Sepehripour, R. J. Dilz, and M. C. van Beurden, "Describing discontinuous finite 3D scattering objects in Gabor coefficients: Fast and accurate methods," J. Opt. Soc. Am. A, Vol. 39, No. 1, 86-96, 2022.
doi:10.1364/JOSAA.438866        Google Scholar

10. Dilz, R. J. and M. C. van Beurden, "Computational aspects of a spatial-spectral domain integral equation for scattering by objects of large longitudinal extent," 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA), 637-640, 2017.
doi:10.1109/ICEAA.2017.8065327        Google Scholar

11. Levinson, H. J., Principles of Lithography, 4th Ed., SPIE Press, 2019.
doi:10.1117/3.2525393

12. Bakshi, V., EUV Lithography , 2nd Ed., SPIE Press, 2018.
doi:10.1117/3.2305675

13. Van den Berg, P. M., Forward and Inverse Scattering Algorithms Based on Contrast Source Integral Equations, 1st Ed., Wiley, 2021.
doi:10.1002/9781119741602

14. Solis, D., F. Obelleiro, and J. Taboada, "Surface integral equation-domain decomposition scheme for solving multiscale nanoparticle assemblies with repetitions," IEEE Photonics Journal, Vol. 8, No. 5, 1-14, 2016.
doi:10.1109/JPHOT.2016.2614895        Google Scholar

15. Chanaud, M., L. Giraud, D. Goudin, J. J. Pesque, and J. Roman, "A parallel full geometric multigrid solver for time harmonic Maxwell problems," SIAM J. Sci. Comput., Vol. 36, No. 2, C119-C138, 2014.
doi:10.1137/130909512        Google Scholar

16. Ruiz-Cabello, M., M. Abelenkovs, L. M. Diaz Angulo, C. Cobos Sanchez, F. Moglie, and S. G. Salvadore, "Performance of parallel FDTD method for shared-and distributed-memory architectures: Application to bioelectromagnetics," PLOS ONE, Vol. 15, No. 9, e0238115, 2020.
doi:10.1371/journal.pone.0238115        Google Scholar

17. Vaccari, A., A. Lesina, L. Cristoforetti, and R. Pontalti, "Parallel implementation of a 3D subgridding FDTD algorithm for large simulations," Progress In Electromagnetics Research, Vol. 120, 263-292, 2011.
doi:10.2528/PIER11063004        Google Scholar

18. Pan, X. M., W. C. Pi, and X. Q. Sheng, "On OpenMP parallelization of the multilevel fast multipole algorithm," Progress In Electromagnetics Research, Vol. 112, 199-213, 2011.
doi:10.2528/PIER10120802        Google Scholar

19. Yang, M. L., H. W. Gao, X. M. Sun, and X. Q. Sheng, "Fast domain decomposition methods of FE-BI-MLFMA for 3D scattering/radiation problems (invited paper)," Progress In Electromagnetics Research, Vol. 155, 39-52, 2016.
doi:10.2528/PIER15102802        Google Scholar

20. MacKie-Mason, B., A. Greenwood, and Z. Peng, "Adaptive and parallel surface integral equation solvers for very large-scale electromagnetic modeling and simulation (invited paper)," Progress In Electromagnetics Research, Vol. 154, 143-162, 2015.
doi:10.2528/PIER15113001        Google Scholar

21. Wait, J. R., Electromagnetic Waves in Stratified Media, Pergamon Press, 1970.

22. Dilz, R. J. and M. C. van Beurden, "A domain integral equation approach for simulating two dimensional transverse electric scattering in a layered medium with a Gabor frame discretization," Journal of Computational Physics, Vol. 345, 528-542, 2017.
doi:10.1016/j.jcp.2017.05.034        Google Scholar

23. Dilz, R. J., M. G. M. M. van Kraaij, and M. C. van Beurden, "The 2D TM scattering problem for finite objects in a dielectric stratified medium employing Gabor frames in a domain integral equation," Journal of the Optical Society of America A, Vol. 8, No. 34, 1315-1321, 2017.
doi:10.1364/JOSAA.34.001315        Google Scholar

24. Barzegar, E., S. J. L. Eijndhoven, and M. C. van Beurden, "Scattered field in random dielectric inhomogeneous media: A random resolvent approach," Progress In Electromagnetics Research B, Vol. 62, 29-47, 2015.
doi:10.2528/PIERB14111304        Google Scholar

25. Van Beurden, M. C. and I. D. Setija, "Local normal vector field formulation for periodic scattering problems formulated in the spectral domain," J. Opt. Soc. Am. A, Vol. 34, No. 2, 224-234, 2014.
doi:10.1364/JOSAA.34.000224        Google Scholar

26. Li, L., "Use of fourier series in the analysis of discontinuous periodic structures," J. Opt. Soc. Am. A, Vol. 13, 1019-1023, 1996.        Google Scholar

27. Popov, E. and M. Neviere, "Maxwell equations in fourier space: Fast-converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media," J. Opt. Soc. Am. A, Vol. 18, 1019-1023, 2001.        Google Scholar

28. Bastiaans, M., "Gabor's expansion and the Zak transform for continuous-time and discrete-time signals: Critical sampling and rational oversampling," EUT Report. E, Vol. 95-E-295, Fac. of Electrical Engineering, Eindhoven University of Technology, 1995.        Google Scholar

29. Strohmer, T., "Approximation of dual gabor frames, window decay, and wireless communications," Applied and Computational Harmonic Analysis, Vol. 11, No. 2, 243-262, 2001.
doi:10.1006/acha.2001.0357        Google Scholar

30. Janssen, A. and P. Sondergaard, "Iterative algorithms to approximate canonical gabor windows: Computational aspects," Journal of Fourier Analysis and Applications, Vol. 31, No. 1, 211-241, 2007.
doi:10.1007/s00041-006-6069-y        Google Scholar

31. Janssen, A., "Some Weyl-Heisenberg frame bound calculations," Indagationes Math, Vol. 7, No. 7, 165-183, 1996.
doi:10.1016/0019-3577(96)85088-9        Google Scholar

32. Jenkins, W., Digital Signal Processing Handbook, CRC, 2010.

33. Christensen, O., Frames and Bases: An Introductory Course, Birkhauser, 2008.
doi:10.1007/978-0-8176-4678-3

34. Von Praun, C. and D. Padua, Encyclopedia of Parallel Computing, Springer, 2011.

35. Yang, C., Introduction to GIS Programming and Fundamentals with Python and ArcGIS, CRC, 2017.
doi:10.1201/9781315156682

36. Hermanns, M., Parallel programming in Fortran 95 using OpenMP, 2002, https://www.openmp.org/wp-content/uploads/F95_OpenMPv1 v2.pdf.

37. Sleijpen, G. L. G. and D. R. Fokkema, "BiCGstab(ℓ) for linear equations involving unsymmetric matrices with complex spectrum," Electron. Trans. Numer. Anal., Vol. 1, No. 1, 11-32, 1993.        Google Scholar

38. Chandra, R., R. Menon, L. Dagum, D. Kohr, D. Maydan, and J. Mcdonald, , Parallel Programming in OpenMP, Morgan Kaufmann, 2001.

39. Hugonin, J. P. and P. Lalanne, RETICOLO software for grating analysis, 2022, https://arxiv.org/abs/2101.00901.

40. EMVA, , Standard for characterization of image sensors and cameras, 2016, https://www.emva.org/wp-content/uploads/EMVA1288-3.0.pdf.

41. Yu, C.-Y., C.-Y. Lin, S.-C. Yang, and H.-Y Lin, "Eight-scale image contrast enhancement based on adaptive inverse hyperbolic tangent algorithm," MDPI Journal of Algorithms, Vol. 7, 597-607, 2014.
doi:10.3390/a7040597        Google Scholar

42. Versaci, M., F. C. Morabito, and G. Angiulli, "Adaptive image contrast enhancement by computing distances into a 4-dimensional fuzzy unit hypercube," IEEE Access, Vol. 5, 26922-26931, 2017.
doi:10.1109/ACCESS.2017.2776349        Google Scholar

43. Kulkarni, A., F. Franchetti, and J. Kovacevic, "Algorithm design for large scale FFT-based simulations on CPU-GPU platforms," 47th International Conference on Parallel Processing, 2018.        Google Scholar

44. Hanounik, B. and X. Hu, "Linear-time matrix transpose algorithms using vector register file with diagonal registers," Proceedings 15th International Symposium on Parallel and Distributed Processing, 8, 2001.
doi:10.1109/IPDPS.2001.924973        Google Scholar