Vol. 112
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-10-04
Efficient ADE-TLM Scheme for Modeling Drude Based Graphene in Terahertz Spectrum
By
Progress In Electromagnetics Research Letters, Vol. 112, 119-126, 2023
Abstract
In this work, a novel time domain Transmission Line Matrix (TLM) algorithm with Symmetrical Condensed Node (SCN) is developed to model electromagnetic (EM) wave propagation through a single graphene layer in Terahertz (THz) spectrum. The intraband conductivity of graphene (assumed to follow the Drude model) is implemented in TLM method by using the Auxiliary Differential Equation (ADE) of conduction current density. The validity and stability of the obtained results demonstrates the effectiveness and precision of this new modeling technique named ADE-(SCN)TLM, and prove that this method is a powerful tool that can be used to model and simulate complex devices based on graphene sheet for terahertz applications (e.g., Electronics, optoelectronic, ect.).
Citation
Mohamed Moumou, Soufiane El Adraoui, Khalid Mounirh, Mohammed Kanjaa, and Mohsine Khalladi, "Efficient ADE-TLM Scheme for Modeling Drude Based Graphene in Terahertz Spectrum," Progress In Electromagnetics Research Letters, Vol. 112, 119-126, 2023.
doi:10.2528/PIERL23060904
References

1. Mbayachi, V. B., E. Ndayiragije, T. Sammani, S. Taj, and E. R. Mbuta, "Graphene synthesis, characterization and its applications: A review," Results in Chemistry, Vol. 3, 100163, 2021.
doi:10.1016/j.rechem.2021.100163        Google Scholar

2. Yang, G., L. Li, W. B. Lee, and M. C. Ng, "Structure of graphene and its disorders: A review," Science and Technology of Advanced Materials, Vol. 19, No. 1, 613-648, 2018.
doi:10.1080/14686996.2018.1494493        Google Scholar

3. Kumar, V., "Linear and nonlinear optical properties of graphene: A review," Journal of Electronic Materials, Vol. 50, No. 7, 3773-3799, 2021.
doi:10.1007/s11664-021-08926-4        Google Scholar

4. Ramadan, O., "Improved direct integration auxiliary differential equation FDTD scheme for modeling graphene drude dispersion," Optik, Vol. 219, 165173, 2020.
doi:10.1016/j.ijleo.2020.165173        Google Scholar

5. Wang, D. W., W. S. Zhao, X. Q. Gu, W. Chen, and W. Y. Yin, "Wideband modeling of graphene-based structures at different temperatures using hybrid FDTD method," IEEE Transactions on Nanotechnology, Vol. 14, No. 2, 250-258, 2015.
doi:10.1109/TNANO.2014.2387576        Google Scholar

6. Moharrami, F. and Z. Atlasbaf, "Simulation of multilayer graphene-dielectric metamaterial by implementing SBC model of graphene in the HIE-FDTD method," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 2238-2245, 2019.
doi:10.1109/TAP.2019.2948505        Google Scholar

7. Chen, W.-J., Q.-W. Liang, S.-Y. Long, and M. Zhao, "Modeling thin graphene sheets in the WLP-FDTD algorithm with surface boundary condition," Progress In Electromagnetics Research Letters, Vol. 91, 93-98, 2020.
doi:10.2528/PIERL20041503        Google Scholar

8. Sarker, P. C., M. M. Rana, and A. K. Sarkar, "Modeling of graphene conductivity using FDTD in the near infrared frequency," 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE), 2016.        Google Scholar

9. Hossain, M. B., S. Muktadhir, and M. M. Rana, "Multi-structural optical devices modeling using graphene tri-layer sheets," Optik, Vol. 127, No. 15, 5841-5851, 2016.
doi:10.1016/j.ijleo.2016.03.075        Google Scholar

10. Johns, P. B., "A symmetrical condensed node for the TLM method," IEEE Transactions on Microwave Theory and Techniques, Vol. 35, No. 4, 370-377, 1987.
doi:10.1109/TMTT.1987.1133658        Google Scholar

11. El Adraoui, S., K. Mounirh, M. I. Yaich, and M. Khalladi, "Shift operator-TLM method for modeling gyroelectric media," Progress In Electromagnetics Research M, Vol. , , Vol. 87, 189-197, 2019.
doi:10.2528/PIERM19081803        Google Scholar

12. El Adraoui, S., A. Zugari, M. Bassouh, M. I. Yaich, and M. Khalladi, "Novel PLRC-TLM algorithm implementation for modeling electromagnetic wave propagation in gyromagnetic media," Methodology, Vol. 6, No. 1, 2013.        Google Scholar

13. El Adraoui, S., M. Bassoh, M. Khalladi, M. I. Yaich, and A. Zugari, "RKETD-TLM modeling of anisotropic magnetized plasma," International Journal of Science and Advanced Technology, Vol. 2, No. 8, 81-84, 2012.        Google Scholar

14. Mounirh, K., S. El Adraoui, Y. Ekdiha, M. I. Yaich, and M. Khalladi, "Modeling of dispersive chiral media using the ADE-TLM method," Progress In Electromagnetics Research M, Vol. 64, 157-166, 2018.
doi:10.2528/PIERM17110103        Google Scholar

15. Kanjaa, M., K. Mounirh, S. El Adraoui, O. El Mrabet, and M. Khalladi, "An ADE-TLM modeling of biological tissues with cole-cole dispersion model," Progress In Electromagnetics Research M, Vol. 89, 161-169, 2020.
doi:10.2528/PIERM19111203        Google Scholar

16. Mounirh, K., S. El Adraoui, M. Charif, M. I. Yaich, and M. Khalladi, "Modeling of anisotropic magnetized plasma media using PLCDRC-TLM method," Optik, Vol. 126, No. 15-16, 1479-1482, 2015.
doi:10.1016/j.ijleo.2015.04.032        Google Scholar

17. Hanson, G. W., "Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene," Journal of Applied Physics, Vol. 103, No. 6, 064302, 2008.
doi:10.1063/1.2891452        Google Scholar

18. Wang, X. H., J. Y. Gao, and F. L. Teixeira, "Stability-improved ADE-FDTD method for wideband modeling of graphene structures," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 1, 212-216, 2018.
doi:10.1109/LAWP.2018.2886335        Google Scholar

19. Niu, K., P. Li, Z. Huang, L. J. Jiang, and H. Bagci, "Numerical methods for electromagnetic modeling of graphene: A review," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 5, 44-58, 2020.
doi:10.1109/JMMCT.2020.2983336        Google Scholar

20. Kim, Y. H., H. Choi, J. Cho, and K. Y. Jung, "FDTD modeling for the accurate electromagnetic wave analysis of graphene," Journal of Electrical Engineering and Technology, Vol. 15, 1281-1286, 2020.
doi:10.1007/s42835-020-00390-0        Google Scholar

21. Sarker, P. C., M. M. Rana, and A. K. Sarkar, "A simple FDTD approach for the analysis and design of graphene based optical devices," Optik, Vol. 144, 1-8, 2017.
doi:10.1016/j.ijleo.2017.06.054        Google Scholar

22. Shao, Y., J. J. Yang, and M. Huang, "A review of computational electromagnetic methods for graphene modeling," International Journal of Antennas and Propagation, Vol. 2016, 2016.
doi:10.1155/2016/7478621        Google Scholar

23. Christopoulos, C., "The transmission-line modeling (TLM) method in electromagnetics," Synthesis Lectures on Computational Electromagnetics, Vol. 1, No. 1, 1-132, 2005.
doi:10.1007/978-3-031-01691-2        Google Scholar

24. Bouzianas, G. D., N. V. Kantartzis, C. S. Antonopoulos, and T. D. Tsiboukis, "Optimal modeling of infinite graphene sheets via a class of generalized FDTD schemes," IEEE Transactions on Magnetics, Vol. 48, No. 2, 379-382, 2012.
doi:10.1109/TMAG.2011.2172778        Google Scholar

25. Wang, X. H., W. Y. Yin, and Z. Chen, "Matrix exponential FDTD modeling of magnetized graphene sheet," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1129-1132, 2013.
doi:10.1109/LAWP.2013.2281053        Google Scholar

26. Afshar, F., A. Akbarzadeh-Sharbaf, and D. D. Giannacopoulos, "A provably stable and simple FDTD formulation for electromagnetic modeling of graphene sheets," IEEE Transactions on Magnetics, Vol. 52, No. 3, 1-4, 2015.
doi:10.1109/TMAG.2015.2487835        Google Scholar

27. El Jbari, M. and M. Moussaoui, High-performance Metric of Graphene-based Heterojunction LEDs and PDs in Visible Light Communication Systems, Recent Advances in Graphene Nanophotonics, Springer Nature, 2023.