1. Mbayachi, V. B., E. Ndayiragije, T. Sammani, S. Taj, and E. R. Mbuta, "Graphene synthesis, characterization and its applications: A review," Results in Chemistry, Vol. 3, 100163, 2021.
doi:10.1016/j.rechem.2021.100163
2. Yang, G., L. Li, W. B. Lee, and M. C. Ng, "Structure of graphene and its disorders: A review," Science and Technology of Advanced Materials, Vol. 19, No. 1, 613-648, 2018.
doi:10.1080/14686996.2018.1494493
3. Kumar, V., "Linear and nonlinear optical properties of graphene: A review," Journal of Electronic Materials, Vol. 50, No. 7, 3773-3799, 2021.
doi:10.1007/s11664-021-08926-4
4. Ramadan, O., "Improved direct integration auxiliary differential equation FDTD scheme for modeling graphene drude dispersion," Optik, Vol. 219, 165173, 2020.
doi:10.1016/j.ijleo.2020.165173
5. Wang, D. W., W. S. Zhao, X. Q. Gu, W. Chen, and W. Y. Yin, "Wideband modeling of graphene-based structures at different temperatures using hybrid FDTD method," IEEE Transactions on Nanotechnology, Vol. 14, No. 2, 250-258, 2015.
doi:10.1109/TNANO.2014.2387576
6. Moharrami, F. and Z. Atlasbaf, "Simulation of multilayer graphene-dielectric metamaterial by implementing SBC model of graphene in the HIE-FDTD method," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 2238-2245, 2019.
doi:10.1109/TAP.2019.2948505
7. Chen, W.-J., Q.-W. Liang, S.-Y. Long, and M. Zhao, "Modeling thin graphene sheets in the WLP-FDTD algorithm with surface boundary condition," Progress In Electromagnetics Research Letters, Vol. 91, 93-98, 2020.
doi:10.2528/PIERL20041503
8. Sarker, P. C., M. M. Rana, and A. K. Sarkar, "Modeling of graphene conductivity using FDTD in the near infrared frequency," 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE), 2016.
9. Hossain, M. B., S. Muktadhir, and M. M. Rana, "Multi-structural optical devices modeling using graphene tri-layer sheets," Optik, Vol. 127, No. 15, 5841-5851, 2016.
doi:10.1016/j.ijleo.2016.03.075
10. Johns, P. B., "A symmetrical condensed node for the TLM method," IEEE Transactions on Microwave Theory and Techniques, Vol. 35, No. 4, 370-377, 1987.
doi:10.1109/TMTT.1987.1133658
11. El Adraoui, S., K. Mounirh, M. I. Yaich, and M. Khalladi, "Shift operator-TLM method for modeling gyroelectric media," Progress In Electromagnetics Research M, Vol. , , Vol. 87, 189-197, 2019.
doi:10.2528/PIERM19081803
12. El Adraoui, S., A. Zugari, M. Bassouh, M. I. Yaich, and M. Khalladi, "Novel PLRC-TLM algorithm implementation for modeling electromagnetic wave propagation in gyromagnetic media," Methodology, Vol. 6, No. 1, 2013.
13. El Adraoui, S., M. Bassoh, M. Khalladi, M. I. Yaich, and A. Zugari, "RKETD-TLM modeling of anisotropic magnetized plasma," International Journal of Science and Advanced Technology, Vol. 2, No. 8, 81-84, 2012.
14. Mounirh, K., S. El Adraoui, Y. Ekdiha, M. I. Yaich, and M. Khalladi, "Modeling of dispersive chiral media using the ADE-TLM method," Progress In Electromagnetics Research M, Vol. 64, 157-166, 2018.
doi:10.2528/PIERM17110103
15. Kanjaa, M., K. Mounirh, S. El Adraoui, O. El Mrabet, and M. Khalladi, "An ADE-TLM modeling of biological tissues with cole-cole dispersion model," Progress In Electromagnetics Research M, Vol. 89, 161-169, 2020.
doi:10.2528/PIERM19111203
16. Mounirh, K., S. El Adraoui, M. Charif, M. I. Yaich, and M. Khalladi, "Modeling of anisotropic magnetized plasma media using PLCDRC-TLM method," Optik, Vol. 126, No. 15-16, 1479-1482, 2015.
doi:10.1016/j.ijleo.2015.04.032
17. Hanson, G. W., "Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene," Journal of Applied Physics, Vol. 103, No. 6, 064302, 2008.
doi:10.1063/1.2891452
18. Wang, X. H., J. Y. Gao, and F. L. Teixeira, "Stability-improved ADE-FDTD method for wideband modeling of graphene structures," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 1, 212-216, 2018.
doi:10.1109/LAWP.2018.2886335
19. Niu, K., P. Li, Z. Huang, L. J. Jiang, and H. Bagci, "Numerical methods for electromagnetic modeling of graphene: A review," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 5, 44-58, 2020.
doi:10.1109/JMMCT.2020.2983336
20. Kim, Y. H., H. Choi, J. Cho, and K. Y. Jung, "FDTD modeling for the accurate electromagnetic wave analysis of graphene," Journal of Electrical Engineering and Technology, Vol. 15, 1281-1286, 2020.
doi:10.1007/s42835-020-00390-0
21. Sarker, P. C., M. M. Rana, and A. K. Sarkar, "A simple FDTD approach for the analysis and design of graphene based optical devices," Optik, Vol. 144, 1-8, 2017.
doi:10.1016/j.ijleo.2017.06.054
22. Shao, Y., J. J. Yang, and M. Huang, "A review of computational electromagnetic methods for graphene modeling," International Journal of Antennas and Propagation, Vol. 2016, 2016.
doi:10.1155/2016/7478621
23. Christopoulos, C., "The transmission-line modeling (TLM) method in electromagnetics," Synthesis Lectures on Computational Electromagnetics, Vol. 1, No. 1, 1-132, 2005.
doi:10.1007/978-3-031-01691-2
24. Bouzianas, G. D., N. V. Kantartzis, C. S. Antonopoulos, and T. D. Tsiboukis, "Optimal modeling of infinite graphene sheets via a class of generalized FDTD schemes," IEEE Transactions on Magnetics, Vol. 48, No. 2, 379-382, 2012.
doi:10.1109/TMAG.2011.2172778
25. Wang, X. H., W. Y. Yin, and Z. Chen, "Matrix exponential FDTD modeling of magnetized graphene sheet," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1129-1132, 2013.
doi:10.1109/LAWP.2013.2281053
26. Afshar, F., A. Akbarzadeh-Sharbaf, and D. D. Giannacopoulos, "A provably stable and simple FDTD formulation for electromagnetic modeling of graphene sheets," IEEE Transactions on Magnetics, Vol. 52, No. 3, 1-4, 2015.
doi:10.1109/TMAG.2015.2487835
27. El Jbari, M. and M. Moussaoui, High-performance Metric of Graphene-based Heterojunction LEDs and PDs in Visible Light Communication Systems, Recent Advances in Graphene Nanophotonics, Springer Nature, 2023.