1. Mbayachi, V. B., E. Ndayiragije, T. Sammani, S. Taj, and E. R. Mbuta, "Graphene synthesis, characterization and its applications: A review," Results in Chemistry, Vol. 3, 100163, 2021.
doi:10.1016/j.rechem.2021.100163 Google Scholar
2. Yang, G., L. Li, W. B. Lee, and M. C. Ng, "Structure of graphene and its disorders: A review," Science and Technology of Advanced Materials, Vol. 19, No. 1, 613-648, 2018.
doi:10.1080/14686996.2018.1494493 Google Scholar
3. Kumar, V., "Linear and nonlinear optical properties of graphene: A review," Journal of Electronic Materials, Vol. 50, No. 7, 3773-3799, 2021.
doi:10.1007/s11664-021-08926-4 Google Scholar
4. Ramadan, O., "Improved direct integration auxiliary differential equation FDTD scheme for modeling graphene drude dispersion," Optik, Vol. 219, 165173, 2020.
doi:10.1016/j.ijleo.2020.165173 Google Scholar
5. Wang, D. W., W. S. Zhao, X. Q. Gu, W. Chen, and W. Y. Yin, "Wideband modeling of graphene-based structures at different temperatures using hybrid FDTD method," IEEE Transactions on Nanotechnology, Vol. 14, No. 2, 250-258, 2015.
doi:10.1109/TNANO.2014.2387576 Google Scholar
6. Moharrami, F. and Z. Atlasbaf, "Simulation of multilayer graphene-dielectric metamaterial by implementing SBC model of graphene in the HIE-FDTD method," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 2238-2245, 2019.
doi:10.1109/TAP.2019.2948505 Google Scholar
7. Chen, W.-J., Q.-W. Liang, S.-Y. Long, and M. Zhao, "Modeling thin graphene sheets in the WLP-FDTD algorithm with surface boundary condition," Progress In Electromagnetics Research Letters, Vol. 91, 93-98, 2020.
doi:10.2528/PIERL20041503 Google Scholar
8. Sarker, P. C., M. M. Rana, and A. K. Sarkar, "Modeling of graphene conductivity using FDTD in the near infrared frequency," 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE), 2016. Google Scholar
9. Hossain, M. B., S. Muktadhir, and M. M. Rana, "Multi-structural optical devices modeling using graphene tri-layer sheets," Optik, Vol. 127, No. 15, 5841-5851, 2016.
doi:10.1016/j.ijleo.2016.03.075 Google Scholar
10. Johns, P. B., "A symmetrical condensed node for the TLM method," IEEE Transactions on Microwave Theory and Techniques, Vol. 35, No. 4, 370-377, 1987.
doi:10.1109/TMTT.1987.1133658 Google Scholar
11. El Adraoui, S., K. Mounirh, M. I. Yaich, and M. Khalladi, "Shift operator-TLM method for modeling gyroelectric media," Progress In Electromagnetics Research M, Vol. , , Vol. 87, 189-197, 2019.
doi:10.2528/PIERM19081803 Google Scholar
12. El Adraoui, S., A. Zugari, M. Bassouh, M. I. Yaich, and M. Khalladi, "Novel PLRC-TLM algorithm implementation for modeling electromagnetic wave propagation in gyromagnetic media," Methodology, Vol. 6, No. 1, 2013. Google Scholar
13. El Adraoui, S., M. Bassoh, M. Khalladi, M. I. Yaich, and A. Zugari, "RKETD-TLM modeling of anisotropic magnetized plasma," International Journal of Science and Advanced Technology, Vol. 2, No. 8, 81-84, 2012. Google Scholar
14. Mounirh, K., S. El Adraoui, Y. Ekdiha, M. I. Yaich, and M. Khalladi, "Modeling of dispersive chiral media using the ADE-TLM method," Progress In Electromagnetics Research M, Vol. 64, 157-166, 2018.
doi:10.2528/PIERM17110103 Google Scholar
15. Kanjaa, M., K. Mounirh, S. El Adraoui, O. El Mrabet, and M. Khalladi, "An ADE-TLM modeling of biological tissues with cole-cole dispersion model," Progress In Electromagnetics Research M, Vol. 89, 161-169, 2020.
doi:10.2528/PIERM19111203 Google Scholar
16. Mounirh, K., S. El Adraoui, M. Charif, M. I. Yaich, and M. Khalladi, "Modeling of anisotropic magnetized plasma media using PLCDRC-TLM method," Optik, Vol. 126, No. 15-16, 1479-1482, 2015.
doi:10.1016/j.ijleo.2015.04.032 Google Scholar
17. Hanson, G. W., "Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene," Journal of Applied Physics, Vol. 103, No. 6, 064302, 2008.
doi:10.1063/1.2891452 Google Scholar
18. Wang, X. H., J. Y. Gao, and F. L. Teixeira, "Stability-improved ADE-FDTD method for wideband modeling of graphene structures," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 1, 212-216, 2018.
doi:10.1109/LAWP.2018.2886335 Google Scholar
19. Niu, K., P. Li, Z. Huang, L. J. Jiang, and H. Bagci, "Numerical methods for electromagnetic modeling of graphene: A review," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 5, 44-58, 2020.
doi:10.1109/JMMCT.2020.2983336 Google Scholar
20. Kim, Y. H., H. Choi, J. Cho, and K. Y. Jung, "FDTD modeling for the accurate electromagnetic wave analysis of graphene," Journal of Electrical Engineering and Technology, Vol. 15, 1281-1286, 2020.
doi:10.1007/s42835-020-00390-0 Google Scholar
21. Sarker, P. C., M. M. Rana, and A. K. Sarkar, "A simple FDTD approach for the analysis and design of graphene based optical devices," Optik, Vol. 144, 1-8, 2017.
doi:10.1016/j.ijleo.2017.06.054 Google Scholar
22. Shao, Y., J. J. Yang, and M. Huang, "A review of computational electromagnetic methods for graphene modeling," International Journal of Antennas and Propagation, Vol. 2016, 2016.
doi:10.1155/2016/7478621 Google Scholar
23. Christopoulos, C., "The transmission-line modeling (TLM) method in electromagnetics," Synthesis Lectures on Computational Electromagnetics, Vol. 1, No. 1, 1-132, 2005.
doi:10.1007/978-3-031-01691-2 Google Scholar
24. Bouzianas, G. D., N. V. Kantartzis, C. S. Antonopoulos, and T. D. Tsiboukis, "Optimal modeling of infinite graphene sheets via a class of generalized FDTD schemes," IEEE Transactions on Magnetics, Vol. 48, No. 2, 379-382, 2012.
doi:10.1109/TMAG.2011.2172778 Google Scholar
25. Wang, X. H., W. Y. Yin, and Z. Chen, "Matrix exponential FDTD modeling of magnetized graphene sheet," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1129-1132, 2013.
doi:10.1109/LAWP.2013.2281053 Google Scholar
26. Afshar, F., A. Akbarzadeh-Sharbaf, and D. D. Giannacopoulos, "A provably stable and simple FDTD formulation for electromagnetic modeling of graphene sheets," IEEE Transactions on Magnetics, Vol. 52, No. 3, 1-4, 2015.
doi:10.1109/TMAG.2015.2487835 Google Scholar
27. El Jbari, M. and M. Moussaoui, High-performance Metric of Graphene-based Heterojunction LEDs and PDs in Visible Light Communication Systems, Recent Advances in Graphene Nanophotonics, Springer Nature, 2023.