1. Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, Vol. 391, No. 12, 667-669, 1998.
doi:10.1038/35570 Google Scholar
2. Garcia-Vidal, F. G., L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, "Light passing through subwavelength apertures," Reviews of Modern Physics, Vol. 82, No. 1, 729-787, 2010.
doi:10.1103/RevModPhys.82.729 Google Scholar
3. Garcia de Abajo, F. J., "Light transmission through a single cylindrical hole in a metallic film," Opt. Express, Vol. 10, No. 25, 1475-1484, 2002.
doi:10.1364/OE.10.001475 Google Scholar
4. Vitrant, G., S. Zaiba, B.Y. Vineeth, T. Kouriba, O. Ziane, O. Stephan, J. Bosson, and P. L. Baldeck, "Obstructive micro diffracting structures as an alternative to plasmonicsnano slits for making efficient microlenses," Opt. Express, Vol. 20, No. 24, 26542-26547, 2012.
doi:10.1364/OE.20.026542 Google Scholar
5. Goncalves, M. R., W. B. Case, A. Arie, and W. P. Schleich, "Single-slit focusing and its representations," Applied Physics B, Vol. 123, No. 4, 1-22, 2017.
doi:10.1007/s00340-017-6675-1 Google Scholar
6. Serdyuk, V. M., S. V. von Gratowski, and V. V. Koledov, "Diffraction focusing of electromagnetic radiation by transmission through sub-wavelength nanoapertures," Semiconductors, Vol. 54, No. 14, 1814-1815, 2020.
doi:10.1134/S1063782620140250 Google Scholar
7. Serdyuk, V. M., "Theoretical investigation of electromagnetic diffraction focusing in the near zone of a sub-wavelength aperture," Photonics and Nanostructures --- Fundamentals and Applications, Vol. 50, 101017, 2022.
doi:10.1016/j.photonics.2022.101017 Google Scholar
8. Born, M. and E. Wolf, Principles of Optics, University Press, 1997.
9. Popov, E., M. Neviere, A. Sentenac, N. Bonod, A.-L. Fehrembach, J. Wenger, P.-F. Lenne, and H. Rigneault, "Single-scattering theory of light diffraction by a circular subwavelength aperture in a finitely conducting screen," J. Opt. Soc. Am. A, Vol. 24 , No. 2, 339-358, 2007.
doi:10.1364/JOSAA.24.000339 Google Scholar
10. Serdyuk, V. M., "Diffraction of a plane electromagnetic wave by a slot in a conducting screen of arbitrary thickness," Technical Physics, Vol. 50, No. 8, 1076-1083, 2005.
doi:10.1134/1.2014542 Google Scholar
11. Serdyuk, V. M., "Method of additive regularization of field integrals in the problem of electromagnetic diffraction by a slot in a conducting screen, placed before a dielectric layer," Progress In Electromagnetics Research B, Vol. 83, 129-151, 2019.
doi:10.2528/PIERB18102906 Google Scholar
12. Bethe, H. A., "Theory of diffraction by small holes," Phys. Rev., Vol. 66, No. 7&8, 163-182, 1944.
doi:10.1103/PhysRev.66.163 Google Scholar
13. Roberts, A., "Electromagnetic theory of diffraction by a circular aperture in a thick, perfectly conducting screen," J. Opt. Soc. Am. A, Vol. 4, No. 10, 1970-1983, 1987.
doi:10.1364/JOSAA.4.001970 Google Scholar
14. Palumbo, L. J. and A. M. Platzeck, "Diffraction by a circular aperture: A new approach," J. Opt. Soc. Am. A, Vol. 4, No. 5, 839-842, 1987.
doi:10.1364/JOSAA.4.000839 Google Scholar
15. Mittra, R. and S. W. Lee, Analytical Techniques in the Theory of Guided Waves, Macmillan, 1971.
16. Chew, W. V., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.
17. Stratton, J. A., Electromagnetic Theory, McGraw-Hill , 1941.
18. Weinstein, L. A., The Theory of Diffraction and the Factorization Method, Golem, 1969.
19. Mathews, J. and R. L. Walker, Mathematical Methods of Physics, W. A. Benjamin, 1964.
20. Tolstov, G. P., Fourier Series, Dover Publications, 1976.
21. Sokolov, A. V., Optical Properties of Metals, American Elsevier Publishing, 1967.