1. Oughton, E. J., W. Lehr, K. Katsaros, et al. "Revisiting wireless internet connectivity: 5G vs Wi-Fi6," Telecommunications Policy, Vol. 45, No. 5, 102127, 2021.
doi:10.1016/j.telpol.2021.102127 Google Scholar
2. Sankaran, S. G. and S. R. Gulasekaran, Wi-Fi6: Protocol and Network, Artech House, 2021.
3. Naik, G., J.-M. Park, J. Ashdown, and W. Lehr, "Next generation Wi-Fi and 5G NR-U in the 6 GHz bands: Opportunities and challenges," IEEE Access, Vol. 8, 153027-153056, 2020.
doi:10.1109/ACCESS.2020.3016036 Google Scholar
4. Sun, J. X., Z. X. Huang, X. L. Wu, et al. "Design of image-reject hairpin filter applied for Ku-band LNB," Proceedings of the 9th International Symposium on Antennas, Propagation and EM Theory, 1161-1164, Guangzhou, 2010. Google Scholar
5. Yang, L., J. Qiang, S. Liu, et al. "A novel wideband bandpass filter based on CSRR-loaded substrate integrated folded waveguide," International Journal of RF and Microwave Computer-aided Engineering, Vol. 30, No. 6, e22181.1-e22181.9, 2020.
doi:10.1002/mmce.22181 Google Scholar
6. Vetury, R., A. S. Kochhar, and J. B. Shealy, "XBAW, an enabling technology for next generation resonators and filter solutions for 5G and Wi-Fi6/6E/7 applications (Invited)," 2022 International Electron Devices Meeting (IEDM), 6.1.1-16.1.4, 2022. Google Scholar
7. Tag, A., M. Schaefer, J. Sadhu, A. Tajic, et al. "Next generation of BAW: The new benchmark for RF acoustic technologies," 2022 IEEE International Ultrasonics Symposium (IUS), 1-4, 2022. Google Scholar
8. Luo, Z., A. Zhang, W. Huang, S. Shao, et al. "Aluminum nitride thin film based reconfigurable integrated photonic devices," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 29, No. 3, 1-19, 2023. Google Scholar
9. Qamar, A. and M. Rais-Zadeh, "Coupled BAW/SAW resonators using AlN/Mo/Si and AlN/Mo/GaN layered structures," IEEE Electron Device Letters, Vol. 40, No. 2, 321-324, 2019.
doi:10.1109/LED.2018.2890755 Google Scholar
10. Marin, S., J. D. Martinez, C. I. Valero, et al. "Microstrip filters with enhanced stopband based on lumped bisected pi-sections with parasitics," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 1, 19-21, 2017.
doi:10.1109/LMWC.2016.2630841 Google Scholar
11. Xiang, K. R. and F. C. Chen, "Compact microstrip bandpass filter with multispurious suppression using quarter-wavelength and half-wavelength uniform impedance resonators," IEEE Access, Vol. 6, 20364-20370, 2018.
doi:10.1109/ACCESS.2018.2822262 Google Scholar
12. Ali, N. O., M. R. Hamid, M. K. A. Rahim, et al. "A compact second-order Chebyshev bandpass filter using U-shaped resonator and defected ground structure," Radioengineering, Vol. 29, No. 2, 321-327, 2020.
doi:10.13164/re.2020.0321 Google Scholar
13. Liu, L. Q., P. Zhang, M. H. Weng, et al. "A miniaturized wideband bandpass filter using quarter-wavelength stepped-impedance resonators," Electronics, Vol. 8, No. 12, 1540, 2019.
doi:10.3390/electronics8121540 Google Scholar
14. Saleh, S., W. Ismail, M. H. Jamaluddin, et al. "5G hairpin bandpass filter," Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 7, No. 1, 1-12, 2021. Google Scholar
15. Wan, F., L. Wu, B. Ravelo, et al. "Analysis of interconnect line coupled with a radial-stub terminated negative group delay circuit," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 5, 1813-1821, 2020.
doi:10.1109/TEMC.2019.2936266 Google Scholar