Vol. 102
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-08-23
Generalized Approach to Antenna Reconfigurability by Switching Load Admittances
By
Progress In Electromagnetics Research B, Vol. 102, 151-169, 2023
Abstract
A general theory of a passive multi-port system is presented, incorporating an arbitrary number of feed and load ports. The result is a nonlinear equation system, in which the solution variables are the load admittances, connected to the load ports. The solution ensures impedance match at all feed ports at one particular frequency. It is also shown how this theory can be applied to adaptive and reconfigurable antennas, by using switches to include or exclude some of the load admittances. If, by open state of a switch, the corresponding load admittance is excluded, then the nonlinear equation system is simplified. In general, one load admittance per feed port is required to obtain complex conjugate impedance match. Then, the admittance has a real and an imaginary part, where the real part relates to a resistor, adding loss to the system. It is shown how loss-less matching can be obtained by using two, purely reactive admittances per feed port.
Citation
Serafin B. Fischer-Kennedy, and Jan Hesselbarth, "Generalized Approach to Antenna Reconfigurability by Switching Load Admittances," Progress In Electromagnetics Research B, Vol. 102, 151-169, 2023.
doi:10.2528/PIERB23071004
References

1. Bahl, I., P. Bhartia, and S. Stuchly, "Design of microstrip antennas covered with a dielectric layer," IEEE Trans. Antennas Propag., Vol. 30, No. 2, 314-318, Mar. 1982.
doi:10.1109/TAP.1982.1142766        Google Scholar

2. Shavit, R., "Dielectric cover effect on rectangular microstrip antenna array," IEEE Trans. Antennas Propag., Vol. 42, No. 8, 1180-1184, Aug. 1994.
doi:10.1109/8.310012        Google Scholar

3. Rano, D., M. A. Chaudray, and M. S. Hashmi, "New model to determine effective permittivity and resonant frequency of patch antenna covered with multiple dielectric layers," IEEE Access, Vol. 8, 34418-34430, 2020.
doi:10.1109/ACCESS.2020.2974912        Google Scholar

4. Soares, A., S. Fonseca, and A. Giarola, "The effect of a dielectric cover on the current distribution and input impedance of printed dipoles," IEEE Trans. Antennas Propag., Vol. 32, No. 11, 1149-1153, Nov. 1984.
doi:10.1109/TAP.1984.1143241        Google Scholar

5. Bailey, M. and C. Swift, "Input admittance of a circular waveguide aperture covered by a dielectric slab," IEEE Trans. Antennas Propag., Vol. 16, No. 4, 386-391, Jul. 1968.
doi:10.1109/TAP.1968.1139207        Google Scholar

6. Bailey, M., "Input admittance of a circular waveguide aperture covered by a dielectric slab," IEEE Trans. Antennas Propag., Vol. 18, No. 5, 596-603, Sep. 1970.
doi:10.1109/TAP.1970.1139761        Google Scholar

7. Behera, S. K. and N. C. Karmakar, "Wearable chipless radio-frequency identification tags for biomedical applications: A review [antenna applications corner]," IEEE Antennas and Prop. Mag., Vol. 62, No. 3, 94-104, Jun. 2020.
doi:10.1109/MAP.2020.2983978        Google Scholar

8. Griffin, J. D., G. D. Durgin, A. Haldi, and B. Kippelen, "RF tag antenna performance on various materials using radio link budgets," IEEE Antennas Wireless Propag. Lett., Vol. 5, 247-250, 2006.
doi:10.1109/LAWP.2006.874072        Google Scholar

9. Ivsic, B., G. Golemac, and D. Bonefacic, "Performance of wearable antenna exposed to adverse environmental conditions," ICECom 2013, 1-4, 2013.        Google Scholar

10. Lilja, J., P. Salonen, T. Kaija, and P. de Maagt, "Design and manufacturing of robust textile antennas for harsh environments," IEEE Trans. Antennas Propag., Vol. 60, No. 9, 4130-4140, Sep. 2012.
doi:10.1109/TAP.2012.2207035        Google Scholar

11. Smith, G., "Directive properties of antennas for transmission into a material half-space," IEEE Trans. Antennas Propag., Vol. 32, No. 3, 232-246, Mar. 1984.
doi:10.1109/TAP.1984.1143307        Google Scholar

12. Warren, C., N. Chiwaridzo, and A. Giannopoulos, "Radiation characteristics of a high-frequency antenna in different dielectric environments," Proc. of the 15th Int. Conf. on Ground Penetrating Radar, 767-772, 2014.
doi:10.1109/ICGPR.2014.6970529        Google Scholar

13. Foster, P. R., "Antenna problems in RFID systems," IEE Colloquium on RFID Technol. (Ref. No. 1999/123), 3/1-3/5, 1999.        Google Scholar

14. Dobkin, D. and S. Weigand, "Environmental effects on RFID tag antennas," IEEE MTT-S Int. Microw. Symp. Dig., 2005, 135-138, 2005.
doi:10.1109/MWSYM.2005.1516541        Google Scholar

15. Karthika, K. and K. Kavitha, "Reconfigurable antennas for advanced wireless communications: A review," Wireless Pers. Commun.May 2021, Vol. 120, No. 4, 2711-2771, May 2021.        Google Scholar

16. Srivastava, M. and A. Kumar, "A review paper on reconfigurable antenna technique and methodology," Emerging Technologies in Data Mining and Information Security. Lecture Notes in Networks and Systems, Vol. 164, 605-615, J. M. R. S. Tavares, S. Chakrabarti, A. Bhattacharya, and S. Ghatak (eds.), Springer, Singapore, 2021.        Google Scholar

17. Christodoulou, C. G., Y. Tawk, S. A. Lane, and S. R. Erwin, "Reconfigurable antennas for wireless and space applications," Proc. of the IEEE, Vol. 100, No. 7, 2250-2261, Jul. 2012.
doi:10.1109/JPROC.2012.2188249        Google Scholar

18. Costantine, J., Y. Tawk, S. E. Barbin, and C. G. Christodoulou, "Reconfigurable antennas: Design and applications," Proc. of the IEEE, Vol. 103, No. 3, 424-437, Mar. 2015.
doi:10.1109/JPROC.2015.2396000        Google Scholar

19. Oliveri, G., D. H. Werner, and A. Massa, "Reconfigurable antennas: Design and applications reconfigurable electromagnetics through metamaterials --- A review," Proc. of the IEEE, Vol. 103, No. 7, 1034-1056, Jul. 2015.
doi:10.1109/JPROC.2015.2394292        Google Scholar

20. Haupt, R. L. and M. Lanagan, "Reconfigurable antennas," IEEE Antennas and Prop. Mag., Vol. 55, No. 1, 49-61, Feb. 2013.
doi:10.1109/MAP.2013.6474484        Google Scholar

21. Pringle, L. N., P. H. Harms, S. P. Blalock, G. N. Kiesel, E. J. Kuster, P. G. Friederich, R. J. Prado, J. M. Morris, and G. S. Smith, "A reconfigurable aperture antenna based on switched links between electrically small metallic patches," IEEE Trans. Antennas Propag., Vol. 52, No. 6, 1434-1445, Jun. 2004.
doi:10.1109/TAP.2004.825648        Google Scholar

22. Soltani, S., P. Lotfi, and R. D. Murch, "Design and optimization of multiport pixel antennas," IEEE Trans. Antennas Propag., Vol. 66, No. 4, 2049-2054, Apr. 2018.
doi:10.1109/TAP.2018.2800759        Google Scholar

23. Lotfi, P., S. Soltani, and R. D. Murch, "Printed endfire beam-steerable pixel antenna," IEEE Trans. Antennas Propag., Vol. 65, No. 8, 3913-3923, Aug. 2017.
doi:10.1109/TAP.2017.2716399        Google Scholar

24. Jiang, F., C.-Y. Chiu, S. Shen, Q. S. Cheng, and R. Murch, "Pixel antenna optimization using N-port characteristic mode analysis," IEEE Trans. Antennas Propag., Vol. 68, No. 5, 3336-3347, May 2020.
doi:10.1109/TAP.2019.2963588        Google Scholar

25. Jiang, F., S. Shen, C.-Y. Chiu, Z. Zhang, Y. Zhang, Q. S. Cheng, and R. Murch, "Pixel antenna optimization based on perturbation sensitivity analysis," IEEE Trans. Antennas Propag., Vol. 70, No. 1, 472-486, Jan. 2022.
doi:10.1109/TAP.2021.3097104        Google Scholar

26. Quijano, J. L. A. and G. Vecchi, "Optimization of an innovative type of compact frequency-reconfigurable antenna," IEEE Trans. Antennas Propag., Vol. 57, No. 1, 9-18, Jan. 2009.
doi:10.1109/TAP.2008.2009649        Google Scholar

27. Ogawa, K., T. Takahashi, Y. Koyanagi, and K. Ito, "Automatic impedance matching of an active helical antenna near a human operator," 33rd Eur. Microw. Conf. Proc. (IEEE Cat. No.03EX723C), Vol. 3, 1271-1274, 2003.
doi:10.1109/EUMA.2003.340850        Google Scholar

28. De Mingo, J., A. Valdovinos, A. Crespo, D. Navarro, and P. Garcia, "An RF electronically controlled impedance tuning network design and its application to an antenna input impedance automatic matching system," IEEE Trans. Microw. Theory Techn., Vol. 52, No. 2, 489-497, Feb. 2004.
doi:10.1109/TMTT.2003.821909        Google Scholar

29. Huang, L., "Theoretical and experimental investigation of adaptive antenna impedance matching for multiband mobile phone applications," IEE Wideband and Multi-band Antennas and Arrays 2005 (Ref. No. 2005/11059), 13-17, 2005.
doi:10.1049/ic:20050280        Google Scholar

30. Qiao, D., Y. Zhao, T. Hung, D. Kimball, M. Li, P. Asbeck, D. Choi, D. Kelly, D. Qiao, et al. "Antenna impedance mismatch measurement and correction for adaptive CDMA transceivers," IEEE MTT-S Int. Microw. Symp. Dig., 2005, 783-786, 2005.
doi:10.1109/MWSYM.2005.1516730        Google Scholar

31. Hur, B., W. R. Eisenstadt, and K. L. Melde, "Testing and validation of adaptive impedance matching system for broadband antenna," Electronics, Vol. 8, No. 9, 1055, Sep. 2019.
doi:10.3390/electronics8091055        Google Scholar

32. Liu, F.-X., Z. Xu, D. C. Ranasinghe, and C. Fumeaux, "Textile folded half-mode substrate-integrated cavity antenna," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1693-1697, 2016.
doi:10.1109/LAWP.2016.2524458        Google Scholar

33. Dissanayake, T., K. P. Esselle, and M. R. Yuce, "Dielectric loaded impedance matching for wideband implanted antennas," IEEE Trans. Microw. Theory Techn., Vol. 57, No. 10, 2480-2487, Oct. 2009.
doi:10.1109/TMTT.2009.2029664        Google Scholar

34. Soontornpipit, P., C. M. Furse, and Y. C. Chung, "Design of implantable microstrip antenna for communication with medical implants," IEEE Trans. Microw. Theory Techn., Vol. 52, No. 8, 1944-1951, Aug. 2004.
doi:10.1109/TMTT.2004.831976        Google Scholar

35. Deleruyelle, T., P. Pannier, M. Egels, and E. Bergeret, "An RFID tag antenna tolerant to mounting on materials," IEEE Antennas and Prop. Mag., Vol. 52, No. 4, 14-19, Aug. 2010.
doi:10.1109/MAP.2010.5638229        Google Scholar

36. Luomaniemi, R., P. Yla-Oijala, A. Lehtovuori, and V. Viikari, "Designing hand-immune handset antennas with adaptive excitation and characteristic modes," IEEE Trans. Antennas Propag., Vol. 69, No. 7, 3829-3839, Jul. 2021.
doi:10.1109/TAP.2020.3044640        Google Scholar

37. Fischer, S. B. and J. Hesselbarth, "Power divider network for dual-fed adaptive antenna," Int. J. of Microw. and Wireless Technol., 1-8, Mar. 2022.        Google Scholar

38. Jeeninga, M., A. J. van der Schaft, and C. De Persis, "Graph theoretic formulae for the determinant and adjugate of Matrices carrying Graph Structure," IFAC-Papers OnLine, Vol. 51, No. 23, 259-264, 2018.
doi:10.1016/j.ifacol.2018.12.045        Google Scholar