1. Nepa, P. and A. Buffi, "Near-field focused microwave antennas near-field shaping and implementation," IEEE Antennas & Propagation Magazine, Vol. 59, No. 3, 42-53, 2017.
doi:10.1109/MAP.2017.2686118 Google Scholar
2. Nepa, P., A. Buffi, A. Michel, and G. Manara, "Technologies for near-field focused microwave antennas," International Journal of Antennas and Propagation, Vol. 2017, 17, 2017. Google Scholar
3. Bogosanovic, M. and A. G. Williamson, "Microstrip antenna array with a beam focused in the near-field zone for application in noncontact microwave industrial inspection," IEEE Transactions on Instrumentation and Measurement, Vol. 56, No. 6, 2186-2195, 2007.
doi:10.1109/TIM.2007.907954 Google Scholar
4. Daniels, D. J., Ground Penetrating Radar, IET, 2004.
doi:10.1049/PBRA015E
5. Guo, T. C., W. W. Guo, and L. E. Larsen, "A local field study of a water-immersed microwave antenna array for medical imagery and therapy," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, 844-854, 1984.
doi:10.1109/TMTT.1984.1132781 Google Scholar
6. He, X., W. Geyi, and S. Wang, "Optimal design of focused arrays for microwave-induced hyperthermia," IET Microwaves, Antennas, and Propagation, Vol. 9, No. 14, 1605-1611, 2015.
doi:10.1049/iet-map.2014.0696 Google Scholar
7. Lee, K., J.-Y. Kim, and S.-H. Son, "Experimental phantom test of 925 MHz microwave energy focusing for non-invasive local thermotherapy," Results in Physics, Vol. 38, 105585, 2022.
doi:10.1016/j.rinp.2022.105585 Google Scholar
8. Omrani, A., G. Link, and J. Jelonnek, "A near-field focused phased-array antenna design using the time-reversal concept for weed control purpose,", arXiv:2302.01012v1 [eess.SY], Feb. 2, 2023. Google Scholar
9. Ismail, M. S. and K. H. Sayidmarie, "Investigation of three array geometries for focused array hyperthermia," The International Symposium on Antennas and Propagation, Sapporo, Japan, 1992. Google Scholar
10. Sayidmarie, K. and A. M. Abdulkhaleq, "Investigation of six array geometries for focused array hyperthermia applications," Progress In Electromagnetics Research M, Vol. 23, 181-194, 2012.
doi:10.2528/PIERM12010605 Google Scholar
11. Tomás, J. J., M. Arrebola, G. León, and F. Las-Heras, "Near-field focussed array with two simultaneous and independent spots," Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, Chicago, IL, USA, 2012. Google Scholar
12. Yi, X., X. Chen, L. Zhou, and S. Hao, "A high-efficiency nearfield focused transmitting antenna based on the equal power divisions," AIP Advances, Vol. 10, No. 11, 115111, 2020.
doi:10.1063/5.0029673 Google Scholar
13. Sayidmarie, K. H. and E. U. Taha, "Development of a semicircle phased array for local hyperthermia," 2005 IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications Proceedings, 1430-1434, 2005.
doi:10.1109/MAPE.2005.1618193 Google Scholar
14. He, X., W. Geyi, and S. Wang, "A hexagonal focused array for microwave hyperthermia: Optimal design and experiment," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 56-59, 2016.
doi:10.1109/LAWP.2015.2429596 Google Scholar
15. Lyu, C., W. Li, Si Li, Y. Mao, and B. Yang, "Design of ultra-wideband phased array applicator for breast cancer hyperthermia therapy," Sensors, Vol. 23, 1051, 2023, https://doi.org/10.3390/s23031051.
doi:10.3390/s23031051 Google Scholar
16. Yildiz, G., I. Farhat, L. Farrugia, J. Bonello, K. Zarb-Adami, C. V. Sammut, T. Yilmaz, and I. Akduman, "Comparison of microwave hyperthermia applicator designs with fora dipole and connected array," Sensors, Vol. 23, 6592, 2023, https://doi.org/10.3390/s23146592.
doi:10.3390/s23146592 Google Scholar
17. Siragusa, R., P. Lemaitre-Auger, and S. Tedjini, "Near field focusing circular microstrip antenna array for RFID applications," IEEE Antennas and Propagation Society International Symposium, 1-4, 2009. Google Scholar
18. Siragusa, R., P. Lemaitre-Auger, and S. Tedjini, "Tunable nearfield focused circular phase-array antenna for 5.8-GHz RFID applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 33-36, 2011.
doi:10.1109/LAWP.2011.2108632 Google Scholar
19. Huang, R., B. Liu, and Q. Tan, "A near-field focused circular array based on dielectric resonator antenna," IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), Dec. 4–10, 2021. Google Scholar
20. Fwzi, M. Z. M. and K. Sayidmarie, "A circular array with improved focusing properties," Progress In Electromagnetics Research C, Vol. 126, 13-22, 2022.
doi:10.2528/PIERC22080806 Google Scholar
21. Cheng, Y. J. and F. Xue, "Ka-band near-field-focused array antenna with variable focal point," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 1725-1732, May 2016.
doi:10.1109/TAP.2016.2540646 Google Scholar
22. Graham, W. J., "Analysis and synthesis of axial field patterns of focused apertures," IEEE Transaction on Antennas and Propagation, Vol. 31, No. 4, Jul. 1983. Google Scholar
23. Smith, D., V. Gowda, O. Yurduseven, S. Larouche, G. Lipworth, Y. Urzhumov, and M. Reynolds, "An analysis of beamed wireless power transfer in the fresnel zone using a dynamic, metasurface aperture," Journal of Applied Physics, Vol. 121, 014901, 2017, http://dx.doi.org/10.1063/1.4973345.
doi:10.1063/1.4973345 Google Scholar
24. Shan, L. and W. Geyi, "Optimal design of focused antenna arrays," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 11, 5565-5571, Nov. 2014.
doi:10.1109/TAP.2014.2357421 Google Scholar
25. Zainud-Deen, S. H., H. A. Malhat, and K. H. Awadalla, "Dielectric resonator antenna phased array for fixed RFID reader in near field region," Proceedings of the Japan-Egypt Conference on Electronics, Communications and Computers Conference (JEC-ECC’12), 102-107, Alexandria, Egypt, Mar. 2012. Google Scholar