Vol. 121
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-11-17
A Focused Circular Array with Variable Focal Length
By
Progress In Electromagnetics Research M, Vol. 121, 63-72, 2023
Abstract
Focused arrays are attracting increased interest because of their wide range of applications. Focusing the antenna's radiation in the near field requires proper phase distribution of the array elements that must be fed through many phase shifters. This work presents a design idea for a focused circular array antenna, whose focal distance can be varied by only a single variable phase shifter. The idea is implemented on a dual-ring circular array having a six-wavelength diameter and focused at five wavelengths by using a single fixed phase shifter. Theoretical analysis and computer simulations of a sample design using MATLAB and CST Microwave Studio show that a phase change of 0.9π leads to a four-wavelength change in the focal distance. A formula for the estimation of the depth of field DOF is derived. The proposed array offers a simple method to vary the focal length continuously by a single variable phase shifter. This idea can be utilized in hyperthermia, RFID, and imaging applications, where the position of the focal spot needs to be moved along the normal to the array.
Citation
Khalil Sayidmarie, and Mohammed Z. Mohammed Fwzi, "A Focused Circular Array with Variable Focal Length," Progress In Electromagnetics Research M, Vol. 121, 63-72, 2023.
doi:10.2528/PIERM23071404
References

1. Nepa, P. and A. Buffi, "Near-field focused microwave antennas near-field shaping and implementation," IEEE Antennas & Propagation Magazine, Vol. 59, No. 3, 42-53, 2017.
doi:10.1109/MAP.2017.2686118

2. Nepa, P., A. Buffi, A. Michel, and G. Manara, "Technologies for near-field focused microwave antennas," International Journal of Antennas and Propagation, Vol. 2017, 17, 2017.

3. Bogosanovic, M. and A. G. Williamson, "Microstrip antenna array with a beam focused in the near-field zone for application in noncontact microwave industrial inspection," IEEE Transactions on Instrumentation and Measurement, Vol. 56, No. 6, 2186-2195, 2007.
doi:10.1109/TIM.2007.907954

4. Daniels, D. J., Ground Penetrating Radar, IET, London, United Kingdom, 2004.
doi:10.1049/PBRA015E

5. Guo, T. C., W. W. Guo, and L. E. Larsen, "A local field study of a water-immersed microwave antenna array for medical imagery and therapy," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, 844-854, 1984.
doi:10.1109/TMTT.1984.1132781

6. He, X., W. Geyi, and S. Wang, "Optimal design of focused arrays for microwave-induced hyperthermia," IET Microwaves, Antennas, and Propagation, Vol. 9, No. 14, 1605-1611, 2015.
doi:10.1049/iet-map.2014.0696

7. Lee, K., J.-Y. Kim, and S.-H. Son, "Experimental phantom test of 925 MHz microwave energy focusing for non-invasive local thermotherapy," Results in Physics, Vol. 38, 105585, 2022.
doi:10.1016/j.rinp.2022.105585

8. Omrani, A., G. Link, and J. Jelonnek, "A near-field focused phased-array antenna design using the time-reversal concept for weed control purpose,", arXiv:2302.01012v1 [eess.SY], Feb. 2, 2023.

9. Ismail, M. S. and K. H. Sayidmarie, "Investigation of three array geometries for focused array hyperthermia," The International Symposium on Antennas and Propagation, Sapporo, Japan, 1992.

10. Sayidmarie, K. and A. M. Abdulkhaleq, "Investigation of six array geometries for focused array hyperthermia applications," Progress In Electromagnetics Research M, Vol. 23, 181-194, 2012.
doi:10.2528/PIERM12010605

11. Tomás, J. J., M. Arrebola, G. León, and F. Las-Heras, "Near-field focussed array with two simultaneous and independent spots," Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, Chicago, IL, USA, 2012.

12. Yi, X., X. Chen, L. Zhou, and S. Hao, "A high-efficiency nearfield focused transmitting antenna based on the equal power divisions," AIP Advances, Vol. 10, No. 11, 115111, 2020.
doi:10.1063/5.0029673

13. Sayidmarie, K. H. and E. U. Taha, "Development of a semicircle phased array for local hyperthermia," 2005 IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications Proceedings, 1430-1434, 2005.
doi:10.1109/MAPE.2005.1618193

14. He, X., W. Geyi, and S. Wang, "A hexagonal focused array for microwave hyperthermia: Optimal design and experiment," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 56-59, 2016.
doi:10.1109/LAWP.2015.2429596

15. Lyu, C., W. Li, Si Li, Y. Mao, and B. Yang, "Design of ultra-wideband phased array applicator for breast cancer hyperthermia therapy," Sensors, Vol. 23, 1051, 2023, https://doi.org/10.3390/s23031051.
doi:10.3390/s23031051

16. Yildiz, G., I. Farhat, L. Farrugia, J. Bonello, K. Zarb-Adami, C. V. Sammut, T. Yilmaz, and I. Akduman, "Comparison of microwave hyperthermia applicator designs with fora dipole and connected array," Sensors, Vol. 23, 6592, 2023, https://doi.org/10.3390/s23146592.
doi:10.3390/s23146592

17. Siragusa, R., P. Lemaitre-Auger, and S. Tedjini, "Near field focusing circular microstrip antenna array for RFID applications," IEEE Antennas and Propagation Society International Symposium, 1-4, 2009.

18. Siragusa, R., P. Lemaitre-Auger, and S. Tedjini, "Tunable nearfield focused circular phase-array antenna for 5.8-GHz RFID applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 33-36, 2011.
doi:10.1109/LAWP.2011.2108632

19. Huang, R., B. Liu, and Q. Tan, "A near-field focused circular array based on dielectric resonator antenna," IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), Dec. 4–10, 2021.

20. Fwzi, M. Z. M. and K. Sayidmarie, "A circular array with improved focusing properties," Progress In Electromagnetics Research C, Vol. 126, 13-22, 2022.
doi:10.2528/PIERC22080806

21. Cheng, Y. J. and F. Xue, "Ka-band near-field-focused array antenna with variable focal point," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 1725-1732, May 2016.
doi:10.1109/TAP.2016.2540646

22. Graham, W. J., "Analysis and synthesis of axial field patterns of focused apertures," IEEE Transaction on Antennas and Propagation, Vol. 31, No. 4, Jul. 1983.

23. Smith, D., V. Gowda, O. Yurduseven, S. Larouche, G. Lipworth, Y. Urzhumov, and M. Reynolds, "An analysis of beamed wireless power transfer in the fresnel zone using a dynamic, metasurface aperture," Journal of Applied Physics, Vol. 121, 014901, 2017, http://dx.doi.org/10.1063/1.4973345.
doi:10.1063/1.4973345

24. Shan, L. and W. Geyi, "Optimal design of focused antenna arrays," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 11, 5565-5571, Nov. 2014.
doi:10.1109/TAP.2014.2357421

25. Zainud-Deen, S. H., H. A. Malhat, and K. H. Awadalla, "Dielectric resonator antenna phased array for fixed RFID reader in near field region," Proceedings of the Japan-Egypt Conference on Electronics, Communications and Computers Conference (JEC-ECC’12), 102-107, Alexandria, Egypt, Mar. 2012.