Vol. 113
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-11-11
Flexible Irregular-Hexagonal CPW-Fed Monopole Antenna with Windmill-Shaped Fractals for Ultra-Wideband Technology
By
Progress In Electromagnetics Research Letters, Vol. 113, 91-100, 2023
Abstract
A novel flexible printed monopole antenna with a windmill-shaped fractal design, which is fed by co-planar waveguide (CPW) is presented in this manuscript for ultra-wideband (UWB) applications. By integrating a modified windmill-shape fractal into the conventional irregular hexagonal-patch, the antenna achieves a significantly wider impedance bandwidth extending up to 156.6% across the frequency band of 1.37-11.25 GHz. Additionally, increasing the number of the windmill-shaped fractals leads to the emergence of further resonances. The overall dimensions of the designed antenna are 50 × 70 × 0.2 mm3, and it boasts an impressive bandwidth-dimension ratio (BDR) of 4457, showcasing exceptional efficiency in utilizing its compact size. The maximum gain reaches 4.8 dBi, while the radiation efficiency attains an impressive 98%. The modified windmill-shape fractal antenna design leverages the multifractal concept, providing monopole antennas with enhanced flexibility in controlling resonances and bandwidth. This manuscript offers a comprehensive presentation and discussion of the process used to improve the impedance bandwidth, shedding light on the antenna's exceptional performance and capabilities.
Citation
Mohamed E. Yassin, Yousef Hassan, Olaoluwa Popoola, Moath Alathbah, and Shaimaa Mohassieb, "Flexible Irregular-Hexagonal CPW-Fed Monopole Antenna with Windmill-Shaped Fractals for Ultra-Wideband Technology," Progress In Electromagnetics Research Letters, Vol. 113, 91-100, 2023.
doi:10.2528/PIERL23081402
References

1. Lakrit, S., S. Das, B. T. P. Madhav, and K. Vasu Babu, "An octagonal star shaped flexible UWB antenna with band-notched characteristics for WLAN applications," Journal of Instrumentation, Vol. 15, No. 2, P02021, 2020.
doi:10.1088/1748-0221/15/02/P02021

2. Sharma, N. and S. S. Bhatia, "Stubs and slits loaded partial ground plane inspired novel hexagonal ring-shaped fractal antenna for 5G/LTE/RFID/GSM/Bluetooth/WLAN/WiMAX wireless applications: Design and measurement," Progress In Electromagnetics Research C, Vol. 112, 99-111, 2021.
doi:10.2528/PIERC21040601

3. Ouf, E. G. E., M. A. E. Abo-Elhassan, A. E. Farahat, K. F. A. Hussein, and S. Mohassieb, "High performance two-arm antenna for super wideband operation," Progress In Electromagnetics Research C, Vol. 125, 105-115, 2022.
doi:10.2528/PIERC22090701

4. Mandelbrot, B. B., Fractals: Form, Chance and Dimension, W. H. Freeman, 1977, ISBN 0-7167-0473-0.

5. Anguera, J., A. And´ujar, J. Jayasinghe, V. V. S. S. S. Chakravarthy, P. S. R. Chowdary, J. L. Pijoan, T. Ali, and C. Cattani, "Fractal antennas: An historical perspective," Fractal and Fract., Vol. 4, 3, 2020.
doi:10.3390/fractalfract4010003

6. Marzouk, M., Y. Rhazi, I. H. Nejdi, F.-E. Zerrad, M. Saih, S. Ahmad, A. Ghaffar, and M. Hussein, "Ultra-wideband compact fractal antenna for WiMAX, WLAN, C and X band applications," Sensors, Vol. 23, 4254, 2023.
doi:10.3390/s23094254

7. Khan, M. A., U. Rafique, H. S¸. Savci, A. N. Nordin, S. H. Kiani, and S. M. Abbas, "Ultrawideband pentagonal fractal antenna with stable radiation characteristics for microwave imaging applications," Electronics, Vol. 11, 2061, 2022.
doi:10.3390/electronics11132061

8. Saleem, I., U. Rafique, S. Agarwal, H. S. Savci, S. M. Abbas, and S. Mukhopadhyay, "Ultrawideband fractal ring antenna for biomedical applications," International Journal of Antennas and Propagation, Vol. 2023, Article ID 5515263, 9 pages, 2023.

9. Kaur, N., J. Singh, and M. Kumar, "Hexagonal ring-shaped dual band antenna using staircase fractal geometry for wireless applications," Wireless Pers. Commun., Vol. 113, 2067-2078, 2020.
doi:10.1007/s11277-020-07307-0

10. Reha, A., A. El Amri, O. Benhmammouch, A. O. Said, A. El Ouadih, and M. Bouchouirbat, "CPW-fed H-tree fractal antenna for WLAN, WIMAX, RFID, C-band, HiperLAN, and UWB applications," Int. J. Microw. Wirel. Technol., Vol. 8, 327-334, 2016.
doi:10.1017/S175907871500001X

11. Daniel, R. S. and R. Selvaraj, "A low-profile split ring monopole antenna loaded with hexagonal split ring resonator for RFID applications," Progress In Electromagnetics Research M, Vol. 92, 169-179, 2020.
doi:10.2528/PIERM20030702

12. Regulagadda, N. R. and U. V. R. Kumari, "A multiband flexible wideband CPW wearable slot antenna for biomedical and IoT applications," Progress In Electromagnetics Research C, Vol. 135, 131-144, 2023.
doi:10.2528/PIERC23052102

13. Amsaveni, A. and M. Bharathi, "Design and implementation of H-shaped fractal antenna for UWB applications," 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), 1-5, Coimbatore, India, 2021.

14. Muthu, R. C. and R. B. Rani, "Asymmetric CPW-fed hexagonal monopole antenna with Boomerang-shaped fractals for ultra-wideband applications," Frequenz, Vol. 76, No. 9–10, 555-568, 2022.

15. Sediq, H. T., J. Nourinia, C. Ghobadi, and B. Mohammadi, "A novel shaped ultrawideband fractal antenna for medical purposes," Biomedical Signal Processing and Control, Vol. 80, Part 2, 2023.

16. Sun, Y., T. I. Yuk, and S. W. Cheung, "Design of a textile ultra-wideband antenna with stable performance for body-centric wireless communications," IET Microw. Antennas Propag., Vol. 8, 1363, 2014.
doi:10.1049/iet-map.2013.0658

17. Zou, Q. and S. Jiang, "A compact flexible fractal ultra-wideband antenna with band notch characteristic," Microwave and Optical Technology Letters, Vol. 63, No. 3, 895-901, 2021.
doi:10.1002/mop.32678

18. Awan, W. A., N. Hussain, and T. T. Le, "Ultra-thin flexible fractal antenna for 2.45 GHz application with wideband harmonic rejection," AEU — International Journal of Electronics and Communications, Vol. 110, 2019.

19. Fahmy, W. M., A. E. Farahat, K. F. A. Hussein, and A. A. Ammar, "High Q-factor bandstop filter based on CPW resonator broadside-coupled to CPW through-line," Progress In Electromagnetics Research B, Vol. 86, 121-138, 2020.
doi:10.2528/PIERB19122305

20. Fahmy, W. M., A. E. Farahat, K. F. A. Hussein, and A. A. Ammar, Dual-band bandpass filter optimized for high Q-factor,” Appl. Comput. Electromagn. Soc. J. (ACES), Vol. 36, 398-410, 2021.
doi:10.47037/2020.ACES.J.360405