1. Zhou, Y., L. Zhang, and S. Xiu, "Design and analysis of platform shielding for wireless charging tram," IEEE Access, Vol. 7, 129443-129451, 2019.
doi:10.1109/ACCESS.2019.2939197 Google Scholar
2. Lee, S., D. H. Kim, Y. Cho, et al. "Low leakage electromagnetic field level and high efficiency using a novel hybrid loop-array design for wireless high power transfer system," IEEE Trans. Ind. Electron., Vol. 66, No. 6, 4356-4367, Jul. 2018.
doi:10.1109/TIE.2018.2851988 Google Scholar
3. Mohammad, M., E. T. Wodajo, S. Choi, et al. "Modeling and design of passive shield to limit EMF emission and to minimize shield loss in unipolar wireless charging system for EV," IEEE Transactions on Power Electronics, Vol. 34, No. 12, 12235-12245, 2019.
doi:10.1109/TPEL.2019.2903788 Google Scholar
4. Mou, W. and M. Lu, "Research on shielding and electromagnetic exposure safety of an electric vehicle wireless charging coil," Progress In Electromagnetics Research C, Vol. 117, 55-72, 2021.
doi:10.2528/PIERC21072701 Google Scholar
5. Kellogg, J., "Navigating the selection of magnetic resonance imaging shielding systems," IEEE Transactions on Electromagnetic Compatibility, Vol. 3, No. 1, 43-46, 2021. Google Scholar
6. Collier, L., et al. "Magnetic field diffusion in medium-walled conductors," IEEE Transactions on Plasma Science, Vol. 47 , No. 1, 1024-1031, 2019.
doi:10.1109/TPS.2018.2881453 Google Scholar
7. Giaccone, L., V. Cirimele, and A. Canova, "Mitigation solutions for the magnetic field produced by MFDC spot welding guns," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 1, 83-92, 2020.
doi:10.1109/TEMC.2018.2877805 Google Scholar
8. Celozzi, S., R. Araneo, and G. Lovat, Electromagnetic Shielding: Theory and Applications, 2nd Edition, Wiley, Hoboken, NJ, USA, 2023.
9. Tesche, F. M., M. V. Ianoz, and T. Karlsson, EMC Analysis Methods and Computational Models, Wiley-Interscience Press, New York, 1996.
10. Lee, K. S. H. and G. Bedrosian, "Diffusive electromagnetic penetration into metallic enclosures," IEEE Trans. Antennas Propagat., Vol. 27, No. 2, 194-198, 1979.
doi:10.1109/TAP.1979.1142064 Google Scholar
11. "Specification for Shielded Enclosures," Specification NSA, 94-106, 1994. Google Scholar
12. "IEEE Standard Method for Measuring the Effectiveness of Electromagnetic Shielding Enclosures," IEEE Standard 299-2006, 2007. Google Scholar
13. Moser, J. R., "Low-frequency shielding of a circular loop electromagnetic field source," IEEE Trans. Electromagn. Compat., Vol. 9, No. 1, 6-18, 1967.
doi:10.1109/TEMC.1967.4307447 Google Scholar
14. Qin, D. and C. Jiao, "Low-frequency magnetic shielding of planar screens: effects of loop radius and loop-to-loop distance," IEEE Transactions on Electromagnetic Compatibility, Vol. 64, No. 2, 367-377, 2021.
doi:10.1109/TEMC.2021.3118543 Google Scholar
15. Andrieu, G., J. Panh, A. Reineix, et al. "Homogenization of composite panels from a nearfield magnetic shielding effectiveness measurement," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 3, 700-703, Jun. 2012.
doi:10.1109/TEMC.2012.2186455 Google Scholar
16. Lovat, G., P. Burghignoli, R. Araneo, and S. Celozzi, "Magnetic shielding of planar metallic screens: A new analytical closed-form solution," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 5, 1884-1888, Oct. 2020.
doi:10.1109/TEMC.2019.2952401 Google Scholar
17. Ryan, C. M., "Computer expression for predicting shielding effectiveness for the low-frequency plane shield case," IEEE Transactions on Electromagnetic Compatibility, Vol. 9, No. 2, 83-94, 1967.
doi:10.1109/TEMC.1967.4307468 Google Scholar
18. Jiao, C., F. Ning, X. Yang, et al. "Low-frequency magnetic shielding of planar shields: A unified wave impedance formula for the transmission line analogy," IEEE Transactions on Electromagnetic Compatibility, Vol. 63, No. 4, 1046-1057, 2021.
doi:10.1109/TEMC.2021.3052779 Google Scholar
19. Matsuzawa, S., T. Kojima, K. Mizuno, et al. "Electromagnetic simulation of low-frequency magnetic shielding of a welded steel plate," IEEE Transactions on Electromagnetic Compatibility, Vol. 63, No. 6, 1896-1903, 2021.
doi:10.1109/TEMC.2021.3087187 Google Scholar
20. Zhang, Z., X. Yang, C. Jiao, et al. "Analytical model for low-frequency magnetic field penetration through a circular aperture on a perfect electric conductor plate," IEEE Transactions on Electromagnetic Compatibility, Vol. 63, No. 5, 2599-1604, 2021.
doi:10.1109/TEMC.2021.3065064 Google Scholar
21. Sun, Z., W. Dong, D. Y. Qin, et al. "Approximate simulation of low-frequency magnetic shielding of a rectangular shielding box with all walls perforated periodical holes," Progress In Electromagnetics Research Letters, Vol. 117, 55-72, 2021. Google Scholar
22. Lovat, G., P. Burghignoli, R. Araneo, et al. "Shielding of an imperfect metallic thin circular disk: Exact and low-frequency analytical solution," Progress In Electromagnetics Research, Vol. 167, 1-10, Jan. 2020.
doi:10.2528/PIER19090908 Google Scholar
23. "Comsol software," [Online] Available: https://www.comsol.asia/comsol-multiphysics.