1. Srivastava, Saurabh Kumar, B. Satyanarayana, Arun Kumar Saurabh, and Manoj Kumar Meshram, "Low RCS polarization-insensitive ultra wideband absorber based on resistive metasurface," 2019 IEEE MTT S International Microwave and RF Conference (IMARC), 1-4, Mumbai, India, Dec. 2019.
doi:10.1109/imarc45935.2019.9118622
2. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207402, May 2008.
doi:10.1103/PhysRevLett.100.207402 Google Scholar
3. Cao, Hailin, Meng Shan, Tao Chen, Jianmei Lei, Linhua Yang, and Xiaoheng Tan, "Triple-band polarization-independent ultrathin metamaterial absorber," Progress in Electromagnetics Research M, Vol. 77, 93-102, 2019.
doi:10.2528/PIERM18110602 Google Scholar
4. Cao, H., M. Shan, T. Chen, J. Lei, L. Yang, and X. Tan, "An ultrathin five-bandpolarization insensitive metamaterial absorber having hexagonal array of 2D-bravais-lattice," Progress In Electromagnetics Research C, Vol. 87, 13-23, 2018. Google Scholar
5. "A novel six-band polarization-insensitive metamaterial absorber with four multiple-mode resonators," Progress In Electromagnetics Research C, Vol. 77, 133-144, 2017. Google Scholar
6. Ghosh, Saptarshi, Somak Bhattacharyya, Devkinandan Chaurasiya, and Kumar Vaibhav Srivastava, "An ultrawideband ultrathin metamaterial absorber based on circular split rings," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1172-1175, 2015.
doi:10.1109/LAWP.2015.2396302 Google Scholar
7. De Araujo, Jose Bruno O., Glaucio L. Siqueira, Erich Kemptner, Mauricio Weber, Cynthia Junqueira, and Marbey Manhaes Mosso, "An ultrathin and ultrawideband metamaterial absorber and an equivalent-circuit parameter retrieval method," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 5, 3739-3746, May 2020.
doi:10.1109/TAP.2020.2963900 Google Scholar
8. Li, Si-Jia, Xiang-Yu Cao, Jun Gao, Tao Liu, Yue-Jun Zheng, and Zhao Zhang, "Analysis and design of three-layer perfect metamaterial-inspired absorber based on double split-serration-rings structure," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 5155-5160, Nov. 2015.
doi:10.1109/TAP.2015.2475634 Google Scholar
9. Huang, Li, Dibakar Roy Chowdhury, Suchitra Ramani, Matthew T. Reiten, Sheng-Nian Luo, Antoinette J. Taylor, and Hou-Tong Chen, "Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band," Optics Letters, Vol. 37, No. 2, 154-156, Jan. 2012.
doi:10.1364/OL.37.000154 Google Scholar
10. Ahmed, Fahad, Tayyab Hassan, and Nosherwan Shoaib, "Comments on “an ultrawideband ultrathin metamaterial absorber based on circular split rings”," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 3, 512-514, Mar. 2020.
doi:10.1109/LAWP.2020.2968144 Google Scholar
11. Rahman, Saeed Ur, Wang Yi, and Qunsheng Cao, "Comments on “an ultrathin and ultrawideband metamaterial absorber and an equivalent-circuit parameter retrieval method”," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 12, 8272-8273, Dec. 2020.
doi:10.1109/TAP.2020.3028549 Google Scholar
12. Zhang, Hao, Yu Ma, Hai Feng Zhang, Jing Yang, and Jia-Xuan Liu, "Comment on “frequency tunable low-cost microwave absorber for EMI/EMC application”," Progress in Electromagnetics Research Letters, Vol. 78, 39-43, 2018.
doi:10.2528/PIERL18052602 Google Scholar
13. Amin, Muhammad, Aliza Fida, Aamir Rashid, Omar Siddiqui, and Farooq A. Tahir, "Anti-reflecting metasurface for broadband polarization independent absorption at ku band frequencies," Scientific Reports, Vol. 12, No. 1, 20073, Jun. 2022.
doi:10.1038/s41598-023-35750-z Google Scholar
14. Chejarla, S., S. R. Thummaluru, and R. K. Chaudhary, "Flexible metamaterial absorber with wide incident angle insensitivity for conformal applications," Electronics Letters, Vol. 55, No. 3, 133-134, Feb. 2019.
doi:10.1049/el.2018.7501 Google Scholar
15. Hakla, Neha, Saptarshi Ghosh, Kumar Vaibhav Srivastava, and Anuj Shukla, "A dual-band conformal metamaterial absorber for curved surface," 2016 Ursi International Symposium on Electromagnetic Theory (EMTS), 771-774, Espoo, Finland, Aug. 2016.
16. Singh, Amit Kumar, Mahesh P. Abegaonkar, and Shiban K. Koul, "Dual- and triple-band polarization insensitive ultrathin conformal metamaterial absorbers with wide angular stability," IEEE Transactions on Electromagnetic Compatibility, Vol. 61, No. 3, 878-886, Jun. 2019.
doi:10.1109/TEMC.2018.2839881 Google Scholar
17. Kumar, Awanish, G. Shrikanth Reddy, and Shiv Narayan, "Flexible EM wave absorber with high angular stability and low cross polarization reflection level," 2021 34th General Assembly and Scientific Symposium of the International Union Radio Science (URSI GASS), 1-4, Italy, 2021.
18. Tirkey, Manish Mathew and Nisha Gupta, "Broadband polarization-insensitive inkjet-printed conformal metamaterial absorber," IEEE Transactions on Electromagnetic Compatibility, Vol. 63, No. 6, 1829-1836, Dec. 2021.
doi:10.1109/TEMC.2021.3089830 Google Scholar
19. Huang, Xianjun, Kewen Pan, and Zhirun Hu, "Experimental demonstration of printed graphene nano-flakes enabled flexible and conformable wideband radar absorbers," Scientific Reports, Vol. 6, Dec. 2016.
doi:10.1038/srep38197 Google Scholar
20. Kalraiya, S., R. K. Chaudhary, and M. A. Abdalla, "Design and analysis of polarization independent conformal wideband metamaterial absorber using resistor loaded sector shaped resonators," Journal of Applied Physics, Vol. 125, No. 13, 134904, Apr. 2019. Google Scholar
21. Kalraiya, Sachin, Raghvendra Kumar Chaudhary, and Mahmoud A. Abdalla, "Design and analysis of polarization independent conformal wideband metamaterial absorber using resistor loaded sector shaped resonators," Journal of Applied Physics, Vol. 125, No. 13, 134904, Apr. 2019.
doi:10.1063/1.5085253 Google Scholar
22. Chen, Huijie, Xiaoqing Yang, Shiyue Wu, Di Zhang, Hui Xiao, Kama Huang, Zhanxia Zhu, and Jianping Yuan, "Flexible and conformable broadband metamaterial absorber with wide-angle and polarization stability for radar application," Materials Research Express, Vol. 5, No. 1, 015804, Jan. 2018.
doi:10.1088/2053-1591/aaa7ab Google Scholar
23. Costa, Filippo, "A simple effective permittivity model for metasurfaces within multilayer stratified media," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 8, 5148-5153, Aug. 2021.
doi:10.1109/TAP.2021.3060493 Google Scholar
24. Munk, B. A., Frequency Selective Surface: Theory and Design, Wiley, New York, 2000.
25. Yu, Weiliang, Guo Qing Luo, Yufeng Yu, Wenhui Cao, Yujian Pan, and Zhongxiang Shen, "Dual-polarized band-absorptive frequency selective rasorber using meander-line and lumped resistors," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 1318-1322, Feb. 2019.
doi:10.1109/TAP.2018.2883643 Google Scholar
26. CARVER, K. R. and J. W. MINK, "Microstrip antenna technology," IEEE Transactions on Antennas and Propagation, Vol. 29, No. 1, 2-24, 1981.
doi:10.1109/TAP.1981.1142523 Google Scholar
27. Costa, Filippo, Simone Genovesi, Agostino Monorchio, and Giuliano Manara, "A circuit-based model for the interpretation of perfect metamaterial absorbers," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 3, 1201-1209, Mar. 2013.
doi:10.1109/TAP.2012.2227923 Google Scholar
28. Wakatsuchi, Hiroki, John Paul, and Christos Christopoulos, "Performance of customizable cut-wire-based metamaterial absorbers: absorbing mechanism and experimental demonstration," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 12, 5743-5752, Dec. 2012.
doi:10.1109/TAP.2012.2210180 Google Scholar
29. Wang, Z. L., K. Hashimoto, N. Shinohara, and H. Matsumoto, "Frequency-selective surface for microwave power transmission," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 10, 2039-2042, Oct. 1999. Google Scholar
30. Bahal, I. and P. Bhartia, Microwave Solid State Circuit Design, 57-60, John-Wiley & Sons, Hoboken, NJ, USA, 2003.
31. Balanis, C. A., Advanced Engineering Electromagnetics, 584, John-Wiley & Sons, USA, 2012.
32. Yang, H., X. Y. Cao, J. Gao, W. Li, Z. Yuan, and K. Shang, "Low RCS metamaterial absorber and extending bandwidth based on electromagnetic resonances," Progress In Electromagnetics Research M, Vol. 33, 31-44, 2013. Google Scholar
33. Product information. [Online], Available: http://www.qdruigao.com/en/.