1. Picard, M. and O. S. Shirihai, "Mitochondrial signal transduction," Cell Metab, Vol. 34, No. 11, 1620-1653, 2022.
doi:10.1016/j.cmet.2022.10.008 Google Scholar
2. Singer, M., C. S. Deutschman, C. W. Seymour, et al. "The third international consensus definitions for sepsis and septic shock (Sepsis-3)," Journal of Electromagnetic Waves and Applications, Vol. 315, No. 8, 801-810, 2016. Google Scholar
3. Navarrete, M. L., M. C. Cerdeño, M. C. Serra, et al. "Mitochondrial and microcirculatory distress syndrome in the critical patient," Med Intensiva, 2013, Vol. 37, No. 7, 476-484.
doi:10.1016/j.medin.2013.03.001 Google Scholar
4. Galley, H. F., "Oxidative stress and mitochondrial dysfunction in sepsis," Br J. Anaesth, Vol. 107, No. 1, 57-64, 2011.
doi:10.1093/bja/aer093 Google Scholar
5. Liaudet, L., N. Rosenblatt-Velin, and P. Pacher, "Role of peroxynitrite in the cardiovascular dysfunction of septic shock," Curr Vasc Pharmacol, Vol. 11, No. 2, 196-207, 2013. Google Scholar
6. Armstrong, P. W., B. Pieske, K. J. Anstrom, J. Ezekowitz, et al. "Vericiguat in patients with heart failure and reduced ejection fraction," N. Engl. J. Med., Vol. 82, No. 20, 1883-1893, 2020.
doi:10.1056/NEJMoa1915928 Google Scholar
7. Sandner, P., D. P. Zimmer, G. T. Milne, et al. "Soluble guanylate cyclase stimulators and activators," Handb. Exp. Pharmacol., Vol. 264, 355-394, 2021. Google Scholar
8. Castora, F. J., "Mitochondrial function and abnormalities implicated in the pathogenesis of ASD," Prog Neuropsychopharmacol Biol Psychiatry, Vol. 92, 83-108, 2019.
doi:10.1016/j.pnpbp.2018.12.015 Google Scholar
9. Galley, H. F., "Oxidative stress and mitochondrial dysfunction in sepsis," Br J. Anaesth, Vol. 107, 57-64, 2011.
doi:10.1093/bja/aer093 Google Scholar
10. Carre, J. E., J. C. Orban, L. Re, K. Felsmann, W. Iffert, M. Bauer, et al. "Survival in critical illness is associated with early activation of mitochondrial biogenesis," Am J Respir Crit Care Med., Vol. 182, 745-751, 2010.
doi:10.1164/rccm.201003-0326OC Google Scholar
11. Jiao, C., Z. Lin, Y. Xu, and S. He, "Noninvasive raman imaging for monitoring mitochondrial redox state in septic rats," Progress In Electromagnetics Research, Vol. 175, 149-157, 2022.
doi:10.2528/PIER22101504 Google Scholar
12. Zhang, C., A. Yang, and S. He, "Lateral flow immunoassay strip based on confocal raman imaging for ultrasensitive and rapid detection of covid-19 and bacterial biomarkers," Progress In Electromagnetics Research M, Vol. 120, 41-54, 2023.
doi:10.2528/PIERM23101104 Google Scholar
13. Luo, J., Z. Lin, Y. Xing, E. Forsberg, C. Wu, X. Zhu, T. Guo, G. Wang, B. Bian, D. Wu, and S. He, "Portable 4D snapshot hyperspectral imager for fastspectral and surface morphology measurements," Progress In Electromagnetics Research, Vol. 173, 25-36, 2022.
doi:10.2528/PIER22021702 Google Scholar
14. Xing, Y., C. Wang, T. Zhang, F. Shen, L. Meng, L. Wang, F. Li, Y. Zhu, Y. Zheng, N. He, and S. He, "VOC detections with optical spectroscopy," Progress In Electromagnetics Research, Vol. 173, 71-92, 2022.
doi:10.2528/PIER22033004 Google Scholar
15. Lalonde, J. W., G. D. Noojin, N. J. Pope, S. M. Powell, V. V. Yakovlev, and M. L. Denton, "Continuous assessment of metabolic activity of mitochondria using resonance Raman microspectroscopy," Journal of Biophotonics, Vol. 14, e202000384, 2021.
doi:10.1002/jbio.202000384 Google Scholar
16. Morimoto, T., L. D. Chiu, H. Kanda, H. Kawagoe, T. Ozawa, M. Nakamura, et al. "Using redox-sensitive mitochondrial cytochrome Raman bands for label-free detection of mitochondrial dysfunction," Analyst, Vol. 144, 2531-2540, 2019.
doi:10.1039/C8AN02213E Google Scholar
17. Jiao, C., Z. Lin, Y. Xu, and S. He, "Noninvasive raman imaging for monitoring mitochondrial redox state in septic rats," Progress In Electromagnetics Research, Vol. 175, 149-157, 2022.
doi:10.2528/PIER22101504 Google Scholar
18. Brazhe, N. A., M. Treiman, B. Faricelli, J. H. Vestergaard, and O. Sosnovtseva, "In situ Raman study of redox state changes of mitochondrial cytochromes in a perfused rat heart," PLoS ONE, Vol. 8, e70488, 2013.
doi:10.1371/journal.pone.0070488 Google Scholar
19. Chen, Z., J. Liu, L. Tian, Q. Zhang, Y. Guan, L. Chen, et al. "Raman micro-spectroscopy monitoring of cytochrome c redox state in Candida utilis during cell death under low-temperature plasma-induced oxidative stress," Analyst, Online ahead of print, 2020. Google Scholar
20. Morimoto, T., L. D. Chiu, H. Kanda, H. Kawagoe, T. Ozawa, M. Nakamura, et al. "Using redox-sensitive mitochondrial cytochrome Raman bands for label-free detection of mitochondrial dysfunction," Analyst, Vol. 144, 2531-2540, 2019.
doi:10.1039/C8AN02213E Google Scholar
21. Shao, J., M. Lin, Y. Li, X. Li, J. Liu, J. Liang, and H. Ya, "In vivo blood glucose quantification using raman spectroscopy," Plos One, Vol. 7, No. 10, e48127, 2012.
doi:10.1371/journal.pone.0048127 Google Scholar
22. Brazhe, N. A., M. Treiman, B. Faricelli, J. H. Vestergaard, and O. Sosnovtseva, "In situ Raman study of redox state changes of mitochondrial cytochromes in a perfused rat heart," PLoS ONE, Vol. 8, e70488, 2013.
doi:10.1371/journal.pone.0070488 Google Scholar