Vol. 114
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-11-27
An Arduino-Controlled Reconfigurable Intelligent Surface with Angular Stability for 5G mmWave Applications
By
Progress In Electromagnetics Research Letters, Vol. 114, 69-74, 2023
Abstract
The role and applications of millimeter wave (mmWave) Reconfigurable Intelligent Surfaces (RIS) have been rapidly increasing by extending the signal coverage with energy and spectrum efficiency. However, the current RIS designs pose challenges like size and angular insensitivity with efficient beamforming functionalities. In this article, we propose a compact and angularly stable RIS unitcell with incident and polarization angle insensitivity in reflection mode. The footprint of the FR4 substrate is 10x10x1.6 mm3 in size. The unitcell structure consists of circular patch inner cuts as a top layer with a full ground. An AlGaAs pin diode is inserted in the middle of the top layer to get the beamforming. The switchable states provide peak resonance at 32.5 GHz (Bandwidth-444 MHz) and 33.6 GHz (Bandwidth-498 MHz) frequencies. Significant gain values of 11.5 and 13.7 dBi are achieved at the operating frequencies. The designed unitcell provides angular stability up to 90˚ oblique incidences and polarization angles. The AlGaAs pin diode is controlled by applying suitable bias levels using Arduino Uno. The numerical simulation results and experimental validation are performed with incident and polarization angles, which are suitable for adapting to the challenges in mmWave applications.
Citation
Badisa Anil Babu, Pulletikurthi Ram Kalyan, Varanasi Venkata Lakshmi, Rana Reharika, and Nakka Varun Raj, "An Arduino-Controlled Reconfigurable Intelligent Surface with Angular Stability for 5G mmWave Applications," Progress In Electromagnetics Research Letters, Vol. 114, 69-74, 2023.
doi:10.2528/PIERL23091903
References

1. Liu, Yuanwei, Xiao Liu, Xidong Mu, Tianwei Hou, Jiaqi Xu, Marco Di Renzo, and Naofal Al-Dhahir, "Reconfigurable intelligent surfaces: principles and opportunities," IEEE Communications Surveys and Tutorials, Vol. 23, No. 3, 1546-1577, 2021.
doi:10.1109/COMST.2021.3077737

2. Pan, Cunhua, Hong Ren, Kezhi Wang, Jonas Florentin Kolb, Maged Elkashlan, Ming Chen, Marco Di Renzo, Yang Hao, Jiangzhou Wang, A. Lee Swindlehurst, Xiaohu You, and Lajos Hanzo, "Reconfigurable intelligent surfaces for 6G systems: principles, applications, and research directions," IEEE Communications Magazine, Vol. 59, No. 6, 14-20, Jun. 2021.
doi:10.1109/MCOM.001.2001076

3. Rappaport, Theodore S., Yunchou Xing, Jr. MacCartney, Andreas F. Molisch, Evangelos Mellios, and Jianhua Zhang, "Overview of millimeter wave communications for fifth-generation (5G) wireless networks-with a focus on propagation models," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6213-6230, Dec. 2017.
doi:10.1109/TAP.2017.2734243

4. Rana, Biswarup, Sung-Sil Cho, and Ic-Pyo Hong, "Review paper on hardware of reconfigurable intelligent surfaces," IEEE Access, Vol. 11, 29614-29634, 2023.
doi:10.1109/ACCESS.2023.3261547

5. Saifullah, Yasir, Yejun He, Amir Boag, Guo-Min Yang, and Feng Xu, "Recent progress in reconfigurable and intelligent metasurfaces: A comprehensive review of tuning mechanisms, hardware designs, and applications," Advanced Science, Vol. 9, No. 33, 1-35, Nov. 2022.
doi:10.1002/advs.202203747

6. Zhang, Lei and Tie Jun Cui, "Angle-insensitive 2-bit programmable coding metasurface with wide incident angles," Proceedings of The 2019 IEEE Asia-pacific Microwave Conference (APMC), 932-934, Singapore, Dec. 2019.
doi:10.1109/apmc46564.2019.9038764

7. Liang, Jing Cheng, Qiang Cheng, Yuan Gao, Cong Xiao, Shang Gao, Lei Zhang, Shi Jin, and Tie Jun Cui, "An angle-insensitive 3-bit reconfigurable intelligent surface," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 10, 8798-8808, Oct. 2022.
doi:10.1109/TAP.2021.3130108

8. Wang, Ruiqi, Yiming Yang, Behrooz Makki, and Atif Shamim, "A Wideband Reconfigurable Intelligent Surface for 5G Millimeter-Wave Applications," arXiv preprint arXiv:2304.11572, 2023.

9. Shekhawat, A. S., B. G. Kashyap, P. C. Theofanopoulos, A. P. S. Sengar, and G. C. Trichopoulos, "A Compact Unit-cell Design for mmWave Reconfigurable Intelligent Surfaces," 2022 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), 84-85, Boulder, CO, USA, 2022.

10. Dai, Linglong, Bichai Wang, Min Wang, Xue Yang, Jingbo Tan, Shuangkaisheng Bi, Shenheng Xu, Fan Yang, Zhi Chen, Marco Di Renzo, Chan-Byoung Chae, and Lajos Hanzo, "Reconfigurable intelligent surface-based wireless communications: antenna design, prototyping, and experimental results," IEEE Access, Vol. 8, 45913-45923, 2020.
doi:10.1109/ACCESS.2020.2977772

11. Gros, Jean-Baptiste, Vladislav Popov, Mikhail A. Odit, Vladimir Lenets, and Geoffroy Lerosey, "A Reconfigurable Intelligent Surface at mmWave Based on a Binary Phase Tunable Metasurface," IEEE Open Journal of The Communications Society, Vol. 2, 1055-1064, 2021.
doi:10.1109/OJCOMS.2021.3076271

12. Saifullah, Yasir, Fuheng Zhang, Guo-Min Yang, and Feng Xu, "3-bit programmable reflective metasurface," 2018 12th International Symposium on Antennas, Propagation and Electromagnetic Theory (ISAPE), 1-2, Hangzhou, Dec. 2018.

13. Trichopoulos, Georgios C., Panagiotis Theofanopoulos, Bharath Kashyap, Aditya Shekhawat, Anuj Modi, Tawfik Osman, Sanjay Kumar, Anand Sengar, Arkajyoti Chang, and Ahmed Alkhateeb, "Design and evaluation of reconfigurable intelligent surfaces in real-world environment," IEEE Open Journal of The Communications Society, Vol. 3, 462-474, 2022.
doi:10.1109/OJCOMS.2022.3158310

14. Hu, Jingzhi, Hongliang Zhang, Boya Di, Lianlin Li, Kaigui Bian, Lingyang Song, Yonghui Li, Zhu Han, and H. Vincent Poor, "Reconfigurable Intelligent Surface Based RF Sensing: Design, Optimization, and Implementation," IEEE Journal on Selected Areas in Communications, Vol. 38, No. 11, 2700-2716, Nov. 2020.
doi:10.1109/JSAC.2020.3007041

15. Vamseekrishna, Allam, Boddapati Taraka Phani Madhav, Tirunagari Anilkumar, and Lakkam Siva Shanker Reddy, "An IoT Controlled Octahedron Frequency Reconfigurable Multiband Antenna for Microwave Sensing Applications," IEEE Sensors Letters, Vol. 3, No. 10, 1-4, Oct. 2019.
doi:10.1109/LSENS.2019.2943772