Vol. 114
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-11-26
A Freely Extendable Closely Packed Dual-Band MIMO Antenna for 5G Wireless Communication
By
Progress In Electromagnetics Research Letters, Vol. 114, 21-29, 2023
Abstract
In this paper, a freely extendable dual-band multiple-input multiple-output (MIMO) antenna for 5G wireless communication is proposed. The highlight of the antenna is that the 2-port array can be freely extended by repeating the radiating elements and decoupling structure periodically. A 2-port MIMO antenna is proposed firstly. It consists of two dual-band radiating elements placed side by side with edge-to-edge spacing of 0.08λ0. Then, a novel multiple bent split ring (MBSR) metamaterial (MTM) unit is designed. By adjusting the size, two kinds of units with single negative characteristics at two resonance points are obtained. By arranging the MBSR-MTM units cleverly between the two elements, dual-frequency decoupling is realized. Simulated and experimental results indicate that the antenna can operate at frequencies of 2.57~2.62 GHz and 3.5~3.6 GHz with the highest isolation of 30.2 dB and 44.5 dB, respectively. Additionally, the envelope correlation coefficient (ECC) is much smaller than 0.05, implying good diversity performance. Furthermore, simulated and experimental results show that the 2-port antenna can be freely extended to multiple-port MIMO antenna without any modification, and the isolation between different ports remains high. The antenna has a compact structure, low profile, and high isolation, providing an excellent choice for 5G wireless communication.
Citation
Jinrong Su, Beijin Lin, Haipeng Dou, and Xinwei Chen, "A Freely Extendable Closely Packed Dual-Band MIMO Antenna for 5G Wireless Communication," Progress In Electromagnetics Research Letters, Vol. 114, 21-29, 2023.
doi:10.2528/PIERL23100401
References

1. Kwon, Ui-Kun, Gi-Hong Im, and Jong-Bu Lim, "MIMO spatial multiplexing technique with transmit diversity," IEEE Signal Processing Letters, Vol. 16, No. 7, 620-623, Jul. 2009.
doi:10.1109/LSP.2009.2019313

2. Sipal, Deepika, Mahesh P. Abegaonkar, and Shiban Kishen Koul, "Easily extendable compact planar UWB MIMO antenna array," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2328-2331, 2017.
doi:10.1109/LAWP.2017.2717496

3. Rekha, Vutukuri Sarvani Duti, Pokkunuri Pardhasaradhi, Boddapati Taraka Phani Madhav, and Yalavarthi Usha Devi, "Dual band notched orthogonal 4-element MIMO antenna with isolation for UWB applications," IEEE Access, Vol. 8, 145871-145880, 2020.
doi:10.1109/ACCESS.2020.3015020

4. Yu, Yantao, Lijun Yi, Xiaoya Liu, and Zhaokai Gu, "Mutual coupling reduction of dual-frequency MIMO array with neutralization lines," 2015 Asia-pacific Microwave Conference (APMC), Vol. 1, 1-3, China, Dec. 2015.

5. Soltani, Saber, Parisa Lotfi, and Ross D. Murch, "A dual-band multiport MIMO slot antenna for WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 529-532, 2017.
doi:10.1109/LAWP.2016.2587732

6. Wang, Lili, Zhonghong Du, Hailong Yang, Ruoyan Ma, Yuchen Zhao, Xueqi Cui, and Xiaoli Xi, "Compact UWB MIMO antenna with high isolation using fencetype decoupling structure," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 8, 1641-1645, Aug. 2019.
doi:10.1109/LAWP.2019.2925857

7. Li, Qian, Alexandros P. Feresidis, Marina Mavridou, and Peter S. Hall, "Miniaturized double-layer ebg structures for broadband mutual coupling reduction between UWB monopoles," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 3, 1170-1173, Mar. 2015.
doi:10.1109/TAP.2014.2387871

8. Wang, Ziyang, Chenglei Li, Qiong Wu, and Yingzeng Yin, "A metasurface-based low-profile array decoupling technology to enhance isolation in MIMO antenna systems," IEEE Access, Vol. 8, 125565-125575, 2020.
doi:10.1109/ACCESS.2020.3007188

9. Sakli, Hedi, C. Abdelhamid, C. Essid, and N. Sakli, "Metamaterial-based antenna performance enhancement for MIMO system applications," IEEE Access, Vol. 9, 38546-38556, 2021.
doi:10.1109/ACCESS.2021.3063630

10. Wang, Ziyang, Chenglei Li, and Yingzeng Yin, "A meta-surface antenna array decoupling (MAAD) design to improve the isolation performance in a MIMO system," IEEE Access, Vol. 8, 61797-61805, 2020.
doi:10.1109/ACCESS.2020.2983482

11. Qamar, Zeeshan, Umair Naeem, Shahid A. Khan, Mitchai Chongcheawchamnan, and M. Farhan Shafique, "Mutual coupling reduction for high-performance densely packed patch antenna arrays on finite substrate," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 1653-1660, May 2016.
doi:10.1109/TAP.2016.2535540

12. Deng, JingYa, JinYong Li, Luyu Zhao, and Lixin Guo, "A dual-band inverted-1 MIMO antenna with enhanced isolation for WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2270-2273, 2017.
doi:10.1109/LAWP.2017.2713986

13. Liu, Feng, Jiayin Guo, Luyu Zhao, Guan-Long Huang, Yingsong Li, and Yingzeng Yin, "Dual-band metasurface-based decoupling method for two closely packed dual-band antennas," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 1, 552-557, Jan. 2020.
doi:10.1109/TAP.2019.2940316

14. Xia, Yinfeng, Shengyuan Luo, and Yingsong Li, "MIMO antenna array decoupling based on a metamaterial structure," Proceedings of The 2018 IEEE 7th Asia-pacific Conference on Antennas and Propagation (APCAP), 383-384, Auckland, New Zealand, Aug. 2018.

15. Cheng, Yong, Zhongyang Sun, Wenjun Lu, and Hongbo Zhu, "A novel compact dual-band MIMO antenna," Proceedings of 2014 3rd Asia-pacific Conference on Antennas and Propagation (APCAP 2014), 157-160, China, Jul. 2014.

16. Luo, Shengyuan, Yingsong Li, and Wanlu Shi, "A dual-frequency antenna array with mutual coupling reduction via metamaterial structures," 2018 IEEE Antennas and Propagation Society International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1385-1386, Boston, Ma, Jul. 2018.

17. Shabbir, Tayyab, Mohammad Tariqul Islam, Samir Salem Al-Bawri, Rabah W. Aldhaheri, Khalid Hamed Alharbi, Abdulah Jeza Aljohani, and Rashid Saleem, "16-port non-planar MIMO antenna system with near-zero-index (NZI) metamaterial decoupling structure for 5g applications," IEEE Access, Vol. 8, 157946-157958, 2020.
doi:10.1109/ACCESS.2020.3020282

18. NAKANO, H and K VICHIEN, "Dual-frequency square patch antenna with rectangular notch," Electronics Letters, Vol. 25, No. 16, 1067-1068, Aug. 1989.
doi:10.1049/el:19890714

19. Chen, Hsiang Nerng, Jeong-Moon Song, and Jung-Dong Park, "A compact circularly polarized MIMO dielectric resonator antenna over electromagnetic band-gap surface for 5g applications," IEEE Access, Vol. 7, 140889-140898, 2019.
doi:10.1109/ACCESS.2019.2943880

20. Chandel, Richa, Anil Kumar Gautam, and Karumudi Rambabu, "Tapered fed compact UWB MIMO-diversity antenna with dual band-notched characteristics," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 4, 1677-1684, Apr. 2018.
doi:10.1109/TAP.2018.2803134

21. Ahmad, Sarosh, Shahid Khan, Bilal Manzoor, Mohammad Soruri, Mohammad Alibakhshikenari, Mariana Dalarsson, and Francisco Falcone, "A compact cpw-fed ultra-wideband multi-input-multi-output (MIMO) antenna for wireless communication networks," IEEE Access, Vol. 10, 25278-25289, 2022.
doi:10.1109/ACCESS.2022.3155762