1. Chen, Jing, Jian Shi, Dominique Decanini, Edmond Cambril, Yong Chen, and Anne-Marie Haghiri-Gosnet, "Gold nanohole arrays for biochemical sensing fabricated by soft UV nanoimprint lithography," Microelectronic Engineering, Vol. 86, No. 4-6, 632-635, 2009.
doi:10.1016/j.mee.2008.12.093 Google Scholar
2. Lindquist, Nathan C., Prashant Nagpal, Kevin M. McPeak, David J. Norris, and Sang-Hyun Oh, "Engineering metallic nanostructures for plasmonics and nanophotonics," Reports on Progress in Physics, Vol. 75, No. 3, 036501, Mar. 2012.
doi:10.1088/0034-4885/75/3/036501 Google Scholar
3. Sadeghi, Pedram, Kaiyu Wu, Tomas Rindzevicius, Anja Boisen, and Silvan Schmid, "Fabrication and characterization of Au dimer antennas on glass pillars with enhanced plasmonic response," Nanophotonics, Vol. 7, No. 2, 497-505, 2017.
doi:10.1515/nanoph-2017-0011 Google Scholar
4. Lopez, Gerardo A., M.-Carmen Esteve, Maria Soler, and Laura M. Lechuga, "Recent advances in nanoplasmonic biosensors: Applications and lab-on-a-chip integration," Nanophotonics, Vol. 6, No. 1, 123-136, Jan. 2017.
doi:10.1515/nanoph-2016-0101 Google Scholar
5. Badri, S. Hadi, M. M. Gilarlue, Sanam Saeid Nahaei, and Jong Su Kim, "High-Q Fano resonance in all-dielectric metasurfaces for molecular fingerprint detection," Journal of the Optical Society of America B, Vol. 39, No. 2, 563-569, 2022. Google Scholar
6. Santoro, Sergio, Ahmet H. Avci, Antonio Politano, and Efrem Curcio, "The advent of thermoplasmonic membrane distillation," Chemical Society Reviews, Vol. 51, 6087-6125, 2022.
doi:10.1039/D0CS00097C Google Scholar
7. Abramovich, Shir, Debasis Dutta, Carlo Rizza, Sergio Santoro, Marco Aquino, Anna Cupolillo, Jessica Occhiuzzi, Mauro Francesco La Russa, Barun Ghosh, Daniel Farias, Andrea Locatelli, Danil W. Boukhvalov, Amit Agarwal, Efrem Curcio, Maya Bar Sadan, and Antonio Politano, "NiSe and CoSe topological nodal-line semimetals: A sustainable platform for efficient thermoplasmonics and solar-driven photothermal membrane distillation," Small, Vol. 18, No. 31, 2201473, Aug. 2022.
doi:10.1002/smll.202201473 Google Scholar
8. Viti, Leonardo, Jin Hu, Dominique Coquillat, Antonio Politano, Wojciech Knap, and Miriam S. Vitiello, "Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response," Scientific Reports, Vol. 6, 20474, Feb. 2016.
doi:10.1038/srep20474 Google Scholar
9. Santoro, Sergio, Marco Aquino, Carlo Rizza, Anna Cupolillo, Danil W. Boukhvalov, Gianluca D'Olimpio, Shir Abramovich, Amit Agarwal, Maya Bar Sadan, Antonio Politano, and Efrem Curcio, "Plasmonic nanofillers-enabled solar membrane crystallization for mineral recovery," Desalination, Vol. 563, 116730, Oct. 2023.
doi:10.1016/j.desal.2023.116730 Google Scholar
10. Dutta, Debasis, Barun Ghosh, Bahadur Singh, Hsin Lin, Antonio Politano, Arun Bansil, and Amit Agarwal, "Collective plasmonic modes in the chiral multifold fermionic material CoSi," Physical Review B, Vol. 105, 165104, Apr. 2022.
doi:10.1103/PhysRevB.105.165104 Google Scholar
11. Politano, Antonio and Gennaro Chiarello, "The influence of electron confinement, quantum size effects, and film morphology on the dispersion and the damping of plasmonic modes in Ag and Au thin films," Progress in Surface Science, Vol. 90, No. 2, 144-193, May 2015.
doi:10.1016/j.progsurf.2014.12.002 Google Scholar
12. Chiarello, Gennaro, Johannes Hofmann, Zhilin Li, Vito Fabio, Liwei Guo, Xiaolong Chen, Sankar Das Sarma, and Antonio Politano, "Tunable surface plasmons in Weyl semimetals TaAs and NbAs," Physical Review B, Vol. 99, 121401, Mar. 2019.
doi:10.1103/PhysRevB.99.121401 Google Scholar
13. Avci, Ahmet H., Sergio Santoro, Antonio Politano, Matteo Propato, Massimo Micieli, Marco Aquino, Zhang Wenjuan, and Efrem Curcio, "Photothermal sweeping gas membrane distillation and reverse electrodialysis for light-to-heat-to-power conversion," Chemical Engineering and Processing - Process Intensification, Vol. 164, 108382, Jul. 2021.
doi:10.1016/j.cep.2021.108382 Google Scholar
14. Park, Kyoung-Duck and Markus B. Raschke, "Polarization control with plasmonic antenna tips: A universal approach to optical nanocrystallography and vector-field imaging," Nano Letters, Vol. 18, No. 5, 2912-2917, 2018.
doi:10.1021/acs.nanolett.8b00108 Google Scholar
15. Nishi, Hiroyasu, Sayaka Hiroya, and Tetsu Tatsuma, "Potential-scanning localized surface plasmon resonance sensor," ACS Nano, Vol. 9, No. 6, 6214-6221, Jun. 2015.
doi:10.1021/acsnano.5b01577 Google Scholar
16. Masson, Jean-Francois, "Surface plasmon resonance clinical biosensors for medical diagnostics," ACS sensors, Vol. 2, No. 1, 16-30, 2017.
doi:10.1021/acssensors.6b00763 Google Scholar
17. Michel, David, Feng Xiao, and Kamal Alameh, "A compact, flexible fiber-optic surface plasmon resonance sensor with changeable sensor chips," Sensors and Actuators B: Chemical, Vol. 246, 258-261, Jul. 2017.
doi:10.1016/j.snb.2017.02.064 Google Scholar
18. Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 111, Springer-Verlag, Berlin, Heidelberg, New York, 1988.
doi:10.1007/BFb0048317
19. Pandey, Ankit Kumar, Anuj K. Sharma, and Rikmantra Basu, "Fluoride glass-based surface plasmon resonance sensor in infrared region: Performance evaluation," Journal of Physics D: Applied Physics, Vol. 50, No. 18, 185103(1-6), 2017.
doi:10.1088/1361-6463/aa66aa Google Scholar
20. Mounir, Bouras, Charik Haouari, Allal Saïd, and Abdesselam Hocini, "Analysis of highly sensitive biosensor for glucose based on a one-dimensional photonic crystal nanocavity," Optical Engineering, Vol. 58, No. 2, 027102, 2019.
doi:10.1117/1.OE.58.2.027102 Google Scholar
21. Charik, Haouari, Mounir Bouras, and Hamza Bennacer, "High-sensitive thermal sensor based on a 1D photonic crystal microcavity with nematic liquid crystal," Progress In Electromagnetics Research M, Vol. 100, 187-195, 2021.
doi:10.2528/PIERM20110404 Google Scholar
22. Gorin, A., A. Jaouad, E. Grondin, V. Aimez, and P. Charette, "Fabrication of silicon nitride waveguides for visible-light using PECVD: A study of the effect of plasma frequency on optical properties," Optics Express, Vol. 16, No. 18, 13509-13516, 2008.
doi:10.1364/OE.16.013509 Google Scholar
23. Valsecchi, Chiara and Alexandre G. Brolo, "Periodic metallic nanostructures as plasmonic chemical sensors," Langmuir, Vol. 29, No. 19, 5638-5649, 2013.
doi:10.1021/la400085r Google Scholar
24. Pandey, Ankit Kumar and Anuj K. Sharma, "Simulation and analysis of plasmonic sensor in NIR with fluoride glass and graphene layer," Photonics and Nanostructures - Fundamentals and Applications, Vol. 28, 94-99, Feb. 2018.
doi:10.1016/j.photonics.2017.12.003 Google Scholar
25. Johnson, Peter B. and R. W. Christy, "Optical constants of the noble metals," Physical Review B, Vol. 6, No. 12, 4370-4379, 1972. Google Scholar
26. Moharam, M. G. and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," Journal of the Optical Society of America, Vol. 71, No. 7, 811-818, 1981. Google Scholar
27. Moharam, M. G., E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," Journal of the Optical Society of America A, Vol. 12, No. 5, 1068-1076, 1995.
doi:10.1364/JOSAA.12.001068 Google Scholar
28. Mirotznik, Mark S., Brandon L. Good, Paul Ransom, David Wikner, and Joseph N. Mait, "Broadband antireflective properties of inverse motheye surfaces," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 9, 2969-2980, Sep. 2010.
doi:10.1109/TAP.2010.2052575 Google Scholar
29. Zhao, B., "Thermal radiative properties of micro/nanostructured plasmonic metamaterials including two-dimensional materials," Georgia Institute of Technology, 2016.