Vol. 119
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-03-30
A Novel Filter with Reconfigurable Bandwidth or Transmission Zeros Based on a Multiple-Mode Stub-Loaded Resonator
By
Progress In Electromagnetics Research Letters, Vol. 119, 7-13, 2024
Abstract
This paper presents a novel bandpass filter with reconfigurable bandwidth or transmission zeros. The proposed filter is based on a multiple-mode stub-loaded resonator. Three PIN diodes are utilized as switching elements to achieve four switchable operating states. The measurement results indicate that the 3 dB fractional bandwidth (FBW) of the filter can be varied from 32.3% to 70% at the centre frequency of 2.2 GHz, and the stopband attenuation is higher than 35 dB. The filter size is only about 0.28λg×0.19λg.
Citation
Liangzu Cao, and Shouzhan Li, "A Novel Filter with Reconfigurable Bandwidth or Transmission Zeros Based on a Multiple-Mode Stub-Loaded Resonator," Progress In Electromagnetics Research Letters, Vol. 119, 7-13, 2024.
doi:10.2528/PIERL24021201
References

1. Feng, Wenjie, Xueke Ma, Yongrong Shi, Suyang Shi, and Wenquan Che, "High-selectivity narrow-and wide-band input-reflectionless bandpass filters with intercoupled dual-behavior resonators," IEEE Transactions on Plasma Science, Vol. 48, No. 2, 446-454, Feb. 2020.        Google Scholar

2. Feng, Wenjie, Yuxia Shang, Wenquan Che, Roberto Gómez-García, and Quan Xue, "Multifunctional reconfigurable filter using transversal signal-interaction concepts," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 11, 980-982, Nov. 2017.
doi:10.1109/LMWC.2017.2750022        Google Scholar

3. Zhu, He and Amin Abbosh, "Tunable band-pass filter with wide stopband and high selectivity using centre-loaded coupled structure," IET Microwaves, Antennas & Propagation, Vol. 9, No. 13, 1371-1375, 2015.        Google Scholar

4. Guo, Hongliang, Jia Ni, and Jiasheng Hong, "Varactor-tuned dual-mode bandpass filter with nonuniform Q distribution," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 11, 1002-1004, 2018.        Google Scholar

5. Lan, BoZhang, Yan Qu, ChenJiang Guo, and Jun Ding, "A fully reconfigurable bandpass-to-notch filter with wide bandwidth tuning range based on external quality factor tuning and multiple-mode resonator," Microwave and Optical Technology Letters, Vol. 61, No. 5, 1253-1258, 2019.        Google Scholar

6. Allanic, Rozenn, Denis Le Berre, Yves Quere, Cédric Quendo, David Chouteau, Virginie Grimal, Damien Valente, and Jérôme Billoue, "A novel synthesis for bandwidth switchable bandpass filters using semi-conductor distributed doped areas," IEEE Access, Vol. 8, 122599-122609, 2020.
doi:10.1109/ACCESS.2020.3006709        Google Scholar

7. Sánchez-Soriano, Miguel Á., Roberto Gómez-García, Germán Torregrosa-Penalva, and Enrique Bronchalo, "Reconfigurable-bandwidth bandpass filter within 10-50%," IET Microwaves, Antennas & Propagation, Vol. 7, No. 7, 502-509, 2013.
doi:10.1049/iet-map.2012.0274        Google Scholar

8. Cheng, Teng and Kam-Weng Tam, "A wideband bandpass filter with reconfigurable bandwidth based on cross-shaped resonator," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 10, 909-911, 2017.        Google Scholar

9. Arain, Salman, Photos Vryonides, Muhammad Ali Babar Abbasi, Abdul Quddious, Marco A. Antoniades, and Symeon Nikolaou, "Reconfigurable bandwidth bandpass filter with enhanced out-of-band rejection using π-section-loaded ring resonator," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 1, 28-30, 2018.        Google Scholar

10. Arain, Salman, Photos Vryonides, Abdul Quddious, and Symeon Nikolaou, "Reconfigurable BPF with constant center frequency and wide tuning range of bandwidth," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 67, No. 8, 1374-1378, 2020.        Google Scholar

11. Karim, Muhammad Faeyz and Mohammed Yakoob Siyal, "A compact switchable and tunable bandpass filter," Progress in Electromagnetics Research M, Vol. 85, 71-81, 2019.        Google Scholar

12. Vryonides, P., S. Nikolaou, S. Kim, and M. M. Tentzeris, "Reconfigurable dual-mode bandpass filter within 10-50%," International Journal of Microwave and Wireless Technologies, Vol. 7, No. 6, 655-660, 2015.
doi:10.1017/S1759078714000932        Google Scholar

13. Tsai, Hsuan-Ju, Bo-Chih Huang, Nan-Wei Chen, and Shyh-Kang Jeng, "A reconfigurable bandpass filter based on a varactor-perturbed, T-shaped dual-mode resonator," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 5, 297-299, 2014.        Google Scholar

14. Fu, Mingye, Quanyuan Feng, Qianyin Xiang, and Nianhua Jiang, "Fully tunable filter with cross coupling and reconfigurable transmission zero," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 12, e22407, 2020.        Google Scholar

15. Ramkumar, S. and R. Boopathi Rani, "Compact reconfigurable bandpass filter using quarter wavelength stubs for ultra-wideband applications," AEU --- International Journal of Electronics and Communications, Vol. 151, 154219, 2022.        Google Scholar

16. Qin, Pei-Yuan, Feng Wei, and Y. Jay Guo, "A wideband-to-narrowband tunable antenna using a reconfigurable filter," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 5, 2282-2285, May 2015.        Google Scholar

17. Liu, Haiwen, Baoping Ren, Xuehui Guan, Jiuhuai Lei, and Shen Li, "Compact dual-band bandpass filter using quadruple-mode square ring loaded resonator (SRLR)," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 4, 181-183, Apr. 2013.        Google Scholar

18. Zhang, Ping, Liqin Liu, Deli Chen, Min-Hang Weng, and Ru-Yuan Yang, "Application of a stub-loaded square ring resonator for wideband bandpass filter design," Electronics, Vol. 9, No. 1, 176, 2020.        Google Scholar