Vol. 119
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-04-03
A Simplified Extended Multilayer SIW Supporting TE01 Mode Integrated with a Feeding Structure
By
Progress In Electromagnetics Research Letters, Vol. 119, 15-19, 2024
Abstract
In this letter, a TE01 operation of a multilayered Substrate Integrated Waveguide (SIW) is presented. To enable the propagation of this typically unsupported mode, the SIW is integrated with feeding layer and with an Electromagnetic Band Gap (EBG) structure, exciting and confining the field within the proposed waveguide structure. The EBG is simply stacked on top and bottom of the proposed structure, allowing for ease of manufacturing. The overall proposed structure is simulated and measured, and the results indicate very low insertion loss in the passband of the waveguide.
Citation
Tzichat M. Empliouk, Christos I. Kolitsidas, and George Kyriacou, "A Simplified Extended Multilayer SIW Supporting TE01 Mode Integrated with a Feeding Structure," Progress In Electromagnetics Research Letters, Vol. 119, 15-19, 2024.
doi:10.2528/PIERL24021403
References

1. Esparza, Nuria, Pablo Alcón, Luis Fernando Herrán, and Fernando Las-Heras, "Substrate integrated waveguides structures using frequency selective surfaces operating in stop-band (SBFSS-SIW)," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 2, 113-115, Feb. 2016.
doi:10.1109/LMWC.2016.2517066

2. Bharath, Kunooru, Srujana Vahini Nandigama, Dasari Ramakrishna, and Vijay M. Pandharipande, "High performance millimeter wave SIW slotted array antenna," Progress In Electromagnetics Research C, Vol. 125, 15-23, 2022.
doi:10.2528/PIERC22072508

3. He, Zhaosheng, Jingye Cai, Zhenhai Shao, Xiang Li, and Yongmao Huang, "A novel power divider integrated with SIW and DGS technology," Progress In Electromagnetics Research, Vol. 139, 289-301, 2013.

4. Chen, Zhenzhong, Dongfang Guan, Zuping Qian, and Wen Wu, "Dual-mode power divider and its application in monopulse antenna," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 69, No. 12, 4839-4843, 2022.

5. Zhang, Tao, Lianming Li, Zhangming Zhu, and Tie Jun Cui, "A broadband planar balun using aperture-coupled microstrip-to-SIW transition," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 8, 532-534, Aug. 2019.

6. Jia, Mingran, Jingwei Zhang, and Yuandan Dong, "A compact and broadband balun based on multilayer SIW," IEEE Microwave and Wireless Components Letters, Vol. 32, No. 2, 105-108, 2022.

7. Wu, Yudan, Yingjie Yu, Ping Su, Xiang Zhang, Licong Wang, and Shuaishuai Wang, "Design of compact SIW bandpass filter with high selectivity," Progress In Electromagnetics Research Letters, Vol. 112, 35-40, 2023.
doi:10.2528/PIERL23071003

8. Roev, Artem, Rob Maaskant, Anders Höök, and Marianna Ivashina, "Wideband mm-Wave transition between a coupled microstrip line array and SIW for high-power generation MMICs," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 10, 867-869, Oct. 2018.
doi:10.1109/LMWC.2018.2864869

9. Roev, Artem, Jawad Qureshi, Marcel Geurts, Rob Maaskant, Marion K. Matters-Kammerer, and Marianna Ivashina, "A wideband mm-Wave Watt-level spatial power-combined power amplifier with 26% PAE in SiGe BiCMOS technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 10, 4436-4448, 2022.

10. Cassivi, Yves and Ke Wu, "Substrate integrated circuits concept applied to the nonradiative dielectric guide," IEE Proceedings - Microwaves, Antennas and Propagation, Vol. 152, No. 6, 424-433, Dec. 2005.

11. Esquius-Morote, Marc, Benjamin Fuchs, Jean-François Zürcher, and Juan R. Mosig, "Extended SIW for TEm0 and TE0n modes and slotline excitation of the TE01 mode," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 8, 412-414, Aug. 2013.
doi:10.1109/LMWC.2013.2270458

12. Esquius-Morote, Marc, Michael Mattes, and Juan R. Mosig, "Orthomode transducer and dual-polarized horn antenna in substrate integrated technology," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 10, 4935-4944, 2014.

13. Chen, Zhenzhong, Dongfang Guan, Zuping Qian, and Wen Wu, "Dual-polarized SIW leaky-wave antenna based on mode-multiplexed feeding structure," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 1, 104-108, 2023.

14. Li, Ao and Kwai-Man Luk, "Millimeter-wave dual linearly polarized endfire antenna fed by 180° hybrid coupler," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1390-1394, 2019.

15. Xia, Xiaoyue, Fan Wu, Chao Yu, Zhi Hao Jiang, Rong Lu, Yu Yao, and Wei Hong, "Millimeter-wave ±45° dual linearly polarized end-fire phased array antenna for 5G/B5G mobile terminals," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 11, 10391-10404, 2022.

16. Knorr, Jeffrey B., "Slot-line transitions (short papers)," IEEE Transactions on Microwave Theory and Techniques, Vol. 22, No. 5, 548-554, 1974.

17. Sievenpiper, Dan, Lijun Zhang, Romulo F. J. Broas, Nicholas G. Alexopolous, and Eli Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999.

18. Pucci, Elena, Eva Rajo-Iglesias, and Per-Simon Kildal, "New microstrip gap waveguide on mushroom-type EBG for packaging of microwave components," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 3, 129-131, 2012.

19. Rajo-Iglesias, Eva, Ashraf Uz Zaman, and Per-Simon Kildal, "Parallel plate cavity mode suppression in microstrip circuit packages using a lid of nails," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 1, 31-33, 2010.

20. Eisenstadt, William R. and Yungseon Eo, "S-parameter-based IC interconnect transmission line characterization," IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 15, No. 4, 483-490, 1992.