Vol. 119
Latest Volume
All Volumes
PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-04-25
Broadband AMC Metasurface and Its Application for Radar Cross Section Reduction of a Microstrip Antenna
By
Progress In Electromagnetics Research Letters, Vol. 119, 73-78, 2024
Abstract
A broadband artificial magnetic conductor (AMC) metasurface for radar cross section reduction is proposed. Modified Jerusalem cross unit and quasi-circular unit can achieve effective reflection phase difference of 180˚ (±37˚) within a wide frequency range from 8.95-17.3 GHz. The broadband metasurface consists of chessboard-arranged 3 × 3 block arrays, and each block arrays is composed of 4 × 4 AMC units. The proposed AMC metasurface is applied to a microstrip antenna for reducing RCS. The measurement results show that the low RCS antenna can obtain 10 dB RCS reduction from 7.93-17.5 GHz. The relative bandwidth is 75.2%, and the maximum reduction value is 30.2 dB. Also, radiation performance of the antenna is well maintained.
Citation
Xutong Wang, Liping Han, Guorui Han, Yufeng Liu, and Yanfeng Geng, "Broadband AMC Metasurface and Its Application for Radar Cross Section Reduction of a Microstrip Antenna," Progress In Electromagnetics Research Letters, Vol. 119, 73-78, 2024.
doi:10.2528/PIERL24031001
References

1. Sharma, Ankit, Deepak Gangwar, Binod Kumar Kanaujia, Santanu Dwari, and Sachin Kumar, "Design of a wideband polarisation conversion metasurface and its application for RCS reduction and gain enhancement of a circularly polarised antenna," IET Microwaves, Antennas & Propagation, Vol. 13, No. 9, 1427-1437, 2019.

2. Samadi, Fereshteh and Abdelrazik Sebak, "Wideband, very low RCS engineered surface with a wide incident angle stability," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 3, 1809-1814, 2021.

3. Thummaluru, Sreenath Reddy, Rajkishor Kumar, and Raghvendra Kumar Chaudhary, "Isolation enhancement and radar cross section reduction of MIMO antenna with frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 3, 1595-1600, 2018.

4. Rajesh, N., K. Malathi, S. Raju, V. Abhai Kumar, S. Deepak Ram Prasath, and M. Gulam Nabi Alsath, "Design of Vivaldi antenna with wideband radar cross section reduction," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 2102-2105, 2017.

5. Chen, Wengang, Constantine A. Balanis, and Craig R. Birtcher, "Checkerboard EBG surfaces for wideband radar cross section reduction," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 6, 2636-2645, 2015.

6. Modi, Anuj Y., Constantine A. Balanis, Craig R. Birtcher, and Hussein N. Shaman, "Novel design of ultrabroadband radar cross section reduction surfaces using artificial magnetic conductors," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 10, 5406-5417, 2017.

7. Cheng, You-Feng, Ju Feng, Cheng Liao, and Xiao Ding, "Analysis and design of wideband low-RCS wide-scan phased array with AMC ground," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 2, 209-213, 2021.

8. Abdullah, Muhammad and Slawomir Koziel, "Supervised-learning-based development of multibit RCS-reduced coding metasurfaces," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 1, 264-274, 2022.

9. Pazokian, Mehdi, Nader Komjani, and Majid Karimipour, "Broadband RCS reduction of microstrip antenna using coding frequency selective surface," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 8, 1382-1385, 2018.

10. Liu, Ying, Yuwen Hao, Kun Li, and Shuxi Gong, "Radar cross section reduction of a microstrip antenna based on polarization conversion metamaterial," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 80-83, 2015.

11. Pandit, Soumen, Akhilesh Mohan, and Priyadip Ray, "Low-RCS low-profile four-element MIMO antenna using polarization conversion metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2102-2106, 2020.

12. Xing, Zhiyu, Feng Yang, Peng Yang, and Jianhua Yang, "A low-RCS and wideband circularly polarized array antenna co-designed with a high-performance AMC-FSS radome," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 8, 1659-1663, 2022.

13. Zheng, Yuejun, Jun Gao, Xiangyu Cao, Zidong Yuan, and Huanhuan Yang, "Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1582-1585, 2015.

14. Zheng, Yue-Jun, Jun Gao, Yu-Long Zhou, Xiang-Yu Cao, Li-Ming Xu, Si-Jia Li, and Huan-Huan Yang, "Metamaterial‐based patch antenna with wideband RCS reduction and gain enhancement using improved loading method," IET Microwaves, Antennas & Propagation, Vol. 11, No. 9, 1183-1189, 2017.