Vol. 120
Latest Volume
All Volumes
PIERL 123 [2024] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-06-13
DOA Estimation Based on Extended Array Using Cyclic Spectral Components
By
Progress In Electromagnetics Research Letters, Vol. 120, 103-107, 2024
Abstract
The paper addresses how to improve the degree of freedom of array for DOA (direction of arrival) estimation. According to the DOA estimation model for cyclostationary signal, a method of constructing virtual extended array based on two cyclic spectral components using a single uniform linear array and a method of estimating DOA based on the virtual array are proposed. Firstly, two array receiving data matrices of uniform linear arrays are constructed by using cyclic autocorrelation function of two different cyclic frequencies. Then, the array receiving data matrix of the virtual nested array is constructed by the Kronecker product of the two linear array receiving data matrices. Through virtual expansion, an M2-dimensional array receiving data matrix is obtained based on a uniform linear array of M-array elements, so that the direction of arrival of M2-1 sources can be estimated. It breaks the limitation of array degrees of freedom. Finally, the direction finding model for the virtual nested array is formulated, and the compressed sensing algorithm is used to estimate the DOAs of sources. Through computational simulation experiments, the performance of the algorithm is verified.
Citation
Zhangsheng Wang, Shuiwei Liu, and Lei Tang, "DOA Estimation Based on Extended Array Using Cyclic Spectral Components," Progress In Electromagnetics Research Letters, Vol. 120, 103-107, 2024.
doi:10.2528/PIERL24040606
References

1. Gao, J., Research on virtual array antenna beamforming algorithm, Master’ Thesis, Heilongjiang University, Harbin, Heilongjiang, China, 2022.

2. Lee, Hyukjung and Joohwan Chun, "Virtual array response vector for angle estimation of MIMO radar with a wide-band interleaved OFDM signal," IEEE Communications Letters, Vol. 25, No. 5, 1539-1543, 2021.

3. Imai, Suguru, Kenji Taguchi, Tatsuya Kashiwa, and Satoru Komatsu, "Estimation of the incoming wave characteristics by MUSIC method using virtual array antenna," SAE International Journal of Passenger Cars - Electronic and Electrical Systems, Vol. 8, No. 1, 146-155, 2015.
doi:10.4271/2015-01-0222

4. Ding, Yarong, Shiwei Ren, Weijiang Wang, and Chengbo Xue, "DOA estimation based on sum-difference coarray with virtual array interpolation concept," EURASIP Journal on Advances in Signal Processing, Vol. 2021, 1-13, 2021.

5. Zhou, L., Research on virtual array beamforming technology based on interpolation transform, Master’ Thesis, Tianjin University of Technology, Tianjin, China, 2018.

6. Li, Y., X. Zhang, F. Gao, W. Wng, and C. Duan, "Application method of adaptive virtual array in deep space exploration," Space Electronic Technology, Vol. 17, No. 1, 77-82, 2020.

7. Xue, Li and Jiao Zhang, "Robust beam-forming method based on conjugate virtual array," 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, Shanghai, China, 2020.

8. Sharma, Umesh and Monika Agrawal, "2qth-order cumulants based virtual array of a single acoustic vector sensor," Digital Signal Processing, Vol. 123, 103438, 2022.

9. Ni, Shu-Yan, Nai-Ping Cheng, and Zheng-Zhong Ni, "Conjugate virtual array beamforming method," Acta Electronica Sinica, Vol. 39, No. 9, 2120-2124, 2011.

10. Hiroyoshi, Y., I. Hiroyuki, H. Keizo, R. Takuya, and Y. Yoshio, "Experimental study on 2-D surface current velocity estimation of ocean surface current radar using virtual array," B-Abstracts of IEICE Transactions on Communications (Japanese Edition), Vol. 98, No. 9, 1-12, 2015.

11. Zhu, J., L. Wang, and Y. Meng, "DOA estimation method based on Khatri-Rao product of virtual array and subspace joint sparse representation," Computer Measure and Control, Vol. 25, No. 5, 147-149, 2017.

12. Wang, N., Virtual array construction and doa estimation of cyclostationary signals based on khatri-rao subspace, Master’ Thesis, Chang’an University, Xi'an, Shaanxi, China, 2016.

13. Liu, Jianyan, Yilong Lu, Yanmei Zhang, and Weijiang Wang, "DOA estimation with enhanced DOFs by exploiting cyclostationarity," IEEE Transactions on Signal Processing, Vol. 65, No. 6, 1486-1496, 2017.

14. Li, Lin, Yulong Yu, and Hui Han, "A low complexity two-demensional DOA joint estimation algorithm based on parallel coprime virtual array," Journal of Electronics & Information Technology, Vol. 43, No. 6, 1653-1658, 2021.

15. Aimin, , Research on DOA estimation algorithm based on virtual hole filling of coprime array, Master’ Thesis, Nanchang University, Nanchang, Jiangxi, China, 2020.

16. Song, H., T. Tang, and J. Qin, "Compressed beamforming direction estimation method based on virtual array," Journal of Heilongjiang Institute of Engineering, Vol. 32, No. 2, 32-36, 2018.