Vol. 121
Latest Volume
All Volumes
PIERL 123 [2024] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-08-05
Development and Measurement of a 3D Printable Radar Absorber
By
Progress In Electromagnetics Research Letters, Vol. 121, 101-105, 2024
Abstract
In this paper, we present our measurements about 3D printable microwave absorber materials. First, we determined the electromagnetic parameters of the material using different measurement techniques, whose some examples we present. Knowing the material parameters, a geometry for a 3D printable absorber was selected, and simulations were performed to optimise the geometry from X-band (8.2 GHz to 12.4 GHz) to Ka-band (26.5 GHz to 40 GHz). Pieces of absorbers were 3D printed using the optimised dimensions and were mounted to a metallic corner reflector as test subject. The corner reflector camouflaged in this way was then measured in an anechoic chamber, and measurements with and without the 3D printed absorbers are compared. We found good agreement between the measurements and simulations and found the structure and the material we used as usable candidates for the reduction of the radar cross section of an object.
Citation
Tobias Plüss, Axel Murk, Diana Vorst, Denis Nötel, Martin Schürch, and Peter Wellig, "Development and Measurement of a 3D Printable Radar Absorber," Progress In Electromagnetics Research Letters, Vol. 121, 101-105, 2024.
doi:10.2528/PIERL24060702
References

1. Saville, Paul, Review of Radar Absorbing Materials, Defence Research & Development Canada, Defence R & D Canada-atlantic, 2005.

2. Lu, Yujiao, Baihong Chi, Dayong Liu, Sheng Gao, Peng Gao, Yao Huang, Jun Yang, Zhiping Yin, and Guangsheng Deng, "Wideband metamaterial absorbers based on conductive plastic with additive manufacturing technology," ACS Omega, Vol. 3, No. 9, 11144-11150, 2018.

3. Ren, Jian and Jia Yuan Yin, "3D-printed low-cost dielectric-resonator-based ultra-broadband microwave absorber using carbon-loaded acrylonitrile butadiene styrene polymer," Materials, Vol. 11, No. 7, 1249, Jul. 2018.

4. Jiang, Wei, Leilei Yan, Hua Ma, Ya Fan, Jiafu Wang, Mingde Feng, and Shaobo Qu, "Electromagnetic wave absorption and compressive behavior of a three-dimensional metamaterial absorber based on 3D printed honeycomb," Scientific Reports, Vol. 8, No. 1, 4817, Mar. 2018.

5. Petroff, Matthew, John Appel, Karwan Rostem, Charles L. Bennett, Joseph Eimer, Tobias Marriage, Joshua Ramirez, and Edward J. Wollack, "A 3D-printed broadband millimeter wave absorber," Review of Scientific Instruments, Vol. 90, No. 2, 024701, 2019.

6. Laur, Vincent, Azar Maalouf, Alexis Chevalier, and Fabrice Comblet, "Three-dimensional printing of honeycomb microwave absorbers: Feasibility and innovative multiscale topologies," IEEE Transactions on Electromagnetic Compatibility, Vol. 63, No. 2, 390-397, 2021.

7. Plüss, Tobias, Felix Zimmer, Tobias Hehn, and Axel Murk, "Characterisation and comparison of material parameters of 3D-printable absorbing materials," Materials, Vol. 15, No. 4, 1503, 2022.

8. Baker-Jarvis, James, Eric J. Vanzura, and William A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, No. 8, 1096-1103, 1990.

9. Doerry, Armin Walter, Reflectors for SAR performance testing, 2014.