Vol. 126
Latest Volume
All Volumes
PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2025-06-16
Spin Decoupling-Scalar Holographic Impedance Hybrid Metasurface for Bidirectional Multibeams
By
Progress In Electromagnetics Research Letters, Vol. 126, 69-75, 2025
Abstract
This paper proposes a spin decoupling phase gradient (SDPG)-scalar holographic impedance (SHI) bidirectional hybrid metasurface (MTS). The integrated SDPG MTS modulates the space wave (SPW) and is excited by the horn, whereas the SHI-integrated MTS modulates the surface wave (SFW) and is excited by a surface-mounted monopole. As example, (1) Dual orbital angular momentum (OAM) beams are generated at 18.3 GHz by the integrated SDPG MTS at 18.3 GHz: left hand circular polarization (LHCP) (OAM mode l1 = 1, θ1 = 30˚, φ1 = 0˚), right hand circular polarization (RHCP) (l2 = -1, θ2 = -30˚, φ2 = 0˚). (2) Linear polarization (LP) pencil beam is generated at 7.8 GHz by the integrated SHI MTS: (l3 = 0, θ3 = 150˚, φ3 = 0˚). The peak gain is 19.9 dBi, and the OAM purity is above 84.7%. The novelty of the manuscript is as follows: (1) To the authors' knowledge, a full-space SDPG-SHI hybrid metasurface has been developed for the first time, which greatly expands the bidirectional multifunctional design freedom. (2) Much higher aperture efficiency (AE) than published results. (3) The proposed SDPG-SHI hybrid MTS simultaneously possesses the following advantages: small size (π × 7.19λ × 7.19λ at 18.3 GHz, and π × 3.06λ × 3.06λ at 7.8 GHz), full space, multibeams, multipolarization, reconfigurability and simultaneous modulation of SPW and SFW. The developed MTS has promising applications in high-capacity bidirectional communication scenarios.
Citation
Hui-Fen Huang, and Fuhua Liu, "Spin Decoupling-Scalar Holographic Impedance Hybrid Metasurface for Bidirectional Multibeams," Progress In Electromagnetics Research Letters, Vol. 126, 69-75, 2025.
doi:10.2528/PIERL25040101
References

1. Balthasar Mueller, J. P., Noah A. Rubin, Robert C. Devlin, Benedikt Groever, and Federico Capasso, "Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization," Physical Review Letters, Vol. 118, No. 11, 113901, 2017.

2. You, Xiaolong, Rajour T. Ako, Madhu Bhaskaran, Sharath Sriram, Christophe Fumeaux, and Withawat Withayachumnankul, "Mechanically tunable terahertz circular polarizer with versatile functions," Laser & Photonics Reviews, Vol. 17, No. 4, 2200305, 2023.

3. Yang, Wenzhi, Lingling Yang, Bin Cai, Ling Wu, Siqi Feng, Yongzhi Cheng, Fu Chen, Hui Luo, and Xiangcheng Li, "Efficiency tunable terahertz graphene metasurfaces for reflective single/dual-focusing effects based on Pancharatnam-Berry phase," Results in Physics, Vol. 65, 108003, 2024.

4. Cheng, Yongzhi, Rui Xing, Fu Chen, Hui Luo, Ashif Aminulloh Fathnan, and Hiroki Wakatsuchi, "Terahertz pseudo-waveform-selective metasurface absorber based on a square-patch structure loaded with linear circuit components," Advanced Photonics Research, Vol. 5, No. 8, 2300303, 2024.

5. Wang, Dong, Lingling Yang, Bin Cai, Ling Wu, Yongzhi Cheng, Fu Chen, Hui Luo, and Xiangcheng Li, "Temperature tunable broadband filter based on hybridized vanadium dioxide (VO2) metasurface," Journal of Physics D: Applied Physics, Vol. 58, No. 3, 035106, 2025.

6. You, Xiaolong, Rajour Tanyi Ako, Sharath Sriram, and Withawat Withayachumnankul, "3D terahertz confocal imaging with chromatic metasurface," Laser & Photonics Reviews, Vol. 19, No. 7, 2401011, 2025.

7. Deng, Ming, Michele Cotrufo, Jian Wang, Jianji Dong, Zhichao Ruan, Andrea Alù, and Lin Chen, "Broadband angular spectrum differentiation using dielectric metasurfaces," Nature Communications, Vol. 15, No. 1, 2237, 2024.

8. Deng, Ming, Saima Kanwal, Zhuochao Wang, Chengkun Cai, Yongzhi Cheng, Jianguo Guan, Guangwei Hu, Jian Wang, Jing Wen, and Lin Chen, "Dielectric metasurfaces for broadband phase-contrast relief-like imaging," Nano Letters, Vol. 24, No. 46, 14641-14647, 2024.

9. Huang, Zhaorui, Yaqin Zheng, Junhao Li, Yongzhi Cheng, Jian Wang, Zhang-Kai Zhou, and Lin Chen, "High-resolution metalens imaging polarimetry," Nano Letters, Vol. 23, No. 23, 10991-10997, 2023.

10. Ghosh, Subhadrita, Swarnadipto Ghosh, and Chinmoy Saha, "Polarization diversified multi beam holographic metasurface antenna for ku band applications," 2024 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), 1-5, Bangalore, India, 2024.

11. Ghosh, Swarnadipto, Puneet K. Mishra, and Chinmoy Saha, "Simplified theoretical characterization on polarized beam using axially quad-sectored impedance modulated metasurface antenna," IEEE Antennas and Wireless Propagation Letters, 2025.

12. Ghosh, Swarnadipto, Indranil Ghosh, Subhadrita Ghosh, H. Priyadarshnam, Chinmoy Saha, et al. "Diagonally polarized dual beam holographic metasurface antenna," 2024 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), 1-4, Hyderabad, India, 2024.

13. Balthasar Mueller, J. P., Noah A. Rubin, Robert C. Devlin, Benedikt Groever, and Federico Capasso, "Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization," Physical Review Letters, Vol. 118, No. 11, 113901, 2017.

14. Casaletti, Massimiliano, Maciej Śmierzchalski, Mauro Ettorre, Ronan Sauleau, and Nicolas Capet, "Polarized beams using scalar metasurfaces," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 8, 3391-3400, Aug. 2016.

15. Li, Mei, Shaoqiu Xiao, Jiang Long, and Daniel F. Sievenpiper, "Surface waveguides supporting both TM mode and TE mode with the same phase velocity," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 9, 3811-3819, Sep. 2016.

16. Luukkonen, Olli, Constantin Simovski, GÉrard Granet, George Goussetis, Dmitri Lioubtchenko, Antti V. Raisanen, and Sergei A. Tretyakov, "Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1624-1632, Jun. 2008.

17. Li, Mei, Shao-Qiu Xiao, and Daniel F. Sievenpiper, "Polarization-insensitive holographic surfaces with broadside radiation," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 12, 5272-5280, Dec. 2016.

18. Sievenpiper, D., Lijun Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999.

19. Zhang, Huifang, Xueqian Zhang, Quan Xu, Chunxiu Tian, Qiu Wang, Yuehong Xu, Yanfeng Li, Jianqiang Gu, Zhen Tian, Chunmei Ouyang, et al. "High-efficiency dielectric metasurfaces for polarization-dependent terahertz wavefront manipulation," Advanced Optical Materials, Vol. 6, No. 1, 1700773, 2018.

20. Huang, Hui-Fen and Jian-Yuan Wang, "Switchable terahertz orbital angular momentum Bessel beams based on spin-decoupled multifunctional reflective metasurfaces," Optics Express, Vol. 31, No. 21, 34855-34870, 2023.

21. Zhang, Tai Yi, Shi Sun, Yue Gou, Hai Lin Wang, Hui Feng Ma, and Tie Jun Cui, "Frequency-multiplexed holographic-reflective coding metasurface for independent controls of surface wave and spatially propagating wave," Advanced Optical Materials, Vol. 11, No. 10, 2202832, 2023.

22. Huang, Huifen and Yingjing Ma, "A scalar-tensor impedance metasurface for frequency-multiplexed multifunctional orbital angular momentum beams generation," Microwave and Optical Technology Letters, Vol. 66, No. 4, e34144, 2024.

23. Cai, Tong, Guang-Ming Wang, Xiao-Long Fu, Jian-Gang Liang, and Ya-Qiang Zhuang, "High-efficiency metasurface with polarization-dependent transmission and reflection properties for both reflectarray and transmitarray," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 6, 3219-3224, Jun. 2018.

24. Movahhedi, Mostafa, Majid Karimipour, and Nader Komjani, "Multibeam bidirectional wideband/wide-scanning-angle holographic leaky-wave antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1507-1511, Jul. 2019.

25. Yu, Long, "Research on holographic tensor impedance modulated surface antenna," University of Electronic Science and Technology of China, 2015.

26. Gou, Yue, Hui Feng Ma, Liang Wei Wu, Zheng Xing Wang, Peng Xu, and Tie Jun Cui, "Broadband spin-selective wavefront manipulations based on Pancharatnam-Berry coding metasurfaces," ACS Omega, Vol. 6, No. 44, 30019-30026, 2021.

27. Wang, Jian and Rui Yang, "Generating high-purity directive circularly polarized beams from conformal anisotropic holographic metasurfaces," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 11, 10718-10723, Nov. 2022.

28. Zhu, Lei, Wenjuan Zhou, Liang Dong, Chunsheng Guan, Guanyu Shang, Xumin Ding, Shah Nawaz Burokur, and Qun Wu, "Full space control of meta-holograms utilizing a bilayered patterned coding metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 2, 322-326, 2022.

29. Zhang, Tai Yi, Shi Sun, Yue Gou, Hai Lin Wang, Hui Feng Ma, and Tie Jun Cui, "Frequency-multiplexed holographic-reflective coding metasurface for independent controls of surface wave and spatially propagating wave," Advanced Optical Materials, Vol. 11, No. 10, 2202832, 2023.

30. Ma, Xiangjin, Silong Chen, Jiaqi Han, Yajie Mu, Haixia Liu, and Long Li, "Bidirectional multi-beam with multi-polarizations tensor holographic metasurface using bilayer anisotropic elements," Optics Express, Vol. 32, No. 14, 24443-24453, 2024.

31. Yao, Eric, Sonja Franke-Arnold, Johannes Courtial, Stephen Barnett, and Miles Padgett, "Fourier relationship between angular position and optical orbital angular momentum," Optics Express, Vol. 14, No. 20, 9071-9076, 2006.