Vol. 126
Latest Volume
All Volumes
PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2025-06-06
Intra- and Peritumoral Radiomics-Based Models for Preoperative Prediction of Lymphatic Vascular Invasion in Invasive Breast Cancer
By
Progress In Electromagnetics Research Letters, Vol. 126, 57-67, 2025
Abstract
In this study, we evaluated the feasibility of intra- and peritumoral artificial intelligence (AI)-based radiomics from Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for preoperative prediction of lymphatic vascular invasion (LVI) in invasive breast cancer (IBC). Our results demonstrated that a radiomic model (area under the receiver operating characteristic curve AUC = 0.951) outperformed a clinical model (AUC = 0.644) in 193 patients. Optimal tumor segmentation using 3D RU-Net (Dice score > 0.75) and 3 mm to 4 mm isotropic 3D peritumoral expansion yielded the strongest predictive performance.
Citation
Lingxia Wang, Weixing Pan, Yitian Wu, Huangqi Zhang, Aie Liu, Enhui Xin, Jiadong Zhang, Lei Chen, Hongjie Hu, and Wenbin Ji, "Intra- and Peritumoral Radiomics-Based Models for Preoperative Prediction of Lymphatic Vascular Invasion in Invasive Breast Cancer," Progress In Electromagnetics Research Letters, Vol. 126, 57-67, 2025.
doi:10.2528/PIERL25040802
References

1. Bray, Freddie, Mathieu Laversanne, Hyuna Sung, Jacques Ferlay, Rebecca L. Siegel, Isabelle Soerjomataram, and Ahmedin Jemal, "Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries," CA: A Cancer Journal for Clinicians, Vol. 74, No. 3, 229-263, 2024.

2. Hwang, Ki-Tae, Young A. Kim, Jongjin Kim, A. Jung Chu, Ji Hyun Chang, So Won Oh, Kyu Ri Hwang, and Young Jun Chai, "The influences of peritumoral lymphatic invasion and vascular invasion on the survival and recurrence according to the molecular subtypes of breast cancer," Breast Cancer Research and Treatment, Vol. 163, 71-82, 2017.

3. Ejlertsen, Bent, Maj-Britt Jensen, Fritz Rank, Birgitte B. Rasmussen, Peer Christiansen, Niels Kroman, Marianne E. Kvistgaard, Marie Overgaard, Dorte B. Toftdahl, Henning T. Mouridsen, et al., "Population-based study of peritumoral lymphovascular invasion and outcome among patients with operable breast cancer," JNCI: Journal of the National Cancer Institute, Vol. 101, No. 10, 729-735, 2009.

4. Yi, Min, Elizabeth A. Mittendorf, Janice N. Cormier, Thomas A. Buchholz, Karl Bilimoria, Aysegul A. Sahin, Gabriel N. Hortobagyi, Ana Maria Gonzalez-Angulo, Sheng Luo, Aman U. Buzdar, et al., "Novel staging system for predicting disease-specific survival in patients with breast cancer treated with surgery as the first intervention: Time to modify the current American joint committee on cancer staging system," Journal of Clinical Oncology, Vol. 29, No. 35, 4654-4661, 2011.
doi:10.1200/JCO.2011.38.3174

5. Rakha, Emad A., Stewart Martin, Andrew H. S. Lee, David Morgan, Paul D. P. Pharoah, Zsolt Hodi, Douglas MacMillan, and Ian O. Ellis, "The prognostic significance of lymphovascular invasion in invasive breast carcinoma," Cancer, Vol. 118, No. 15, 3670-3680, 2012.

6. Schoppmann, Sebastian F., Guenther Bayer, Klaus Aumayr, Susanne Taucher, Silvana Geleff, Margaretha Rudas, Ernst Kubista, Hubert Hausmaninger, Hellmut Samonigg, Michael Gnant, et al., "Prognostic value of lymphangiogenesis and lymphovascular invasion in invasive breast cancer," Annals of Surgery, Vol. 240, No. 2, 306-312, 2004.

7. Viale, G., A. Giobbie-Hurder, B. A. Gusterson, E. Maiorano, M. G. Mastropasqua, A. Sonzogni, E. Mallon, M. Colleoni, M. Castiglione-Gertsch, M. M. Regan, et al., "Adverse prognostic value of peritumoral vascular invasion: Is it abrogated by adequate endocrine adjuvant therapy? Results from two International Breast Cancer Study Group randomized trials of chemoendocrine adjuvant therapy for early breast cancer," Annals of Oncology, Vol. 21, No. 2, 245-254, 2010.

8. Colleoni, M., N. Rotmensz, P. Maisonneuve, A. Sonzogni, G. Pruneri, C. Casadio, A. Luini, P. Veronesi, M. Intra, V. Galimberti, et al., "Prognostic role of the extent of peritumoral vascular invasion in operable breast cancer," Annals of Oncology, Vol. 18, No. 10, 1632-1640, 2007.

9. Yu, Yunfang, Zifan He, Jie Ouyang, Yujie Tan, Yongjian Chen, Yang Gu, Luhui Mao, Wei Ren, Jue Wang, Lili Lin, et al., "Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study," EBioMedicine, Vol. 69, 103460, 2021.

10. Liu, Zhuangsheng, Bao Feng, Changlin Li, Yehang Chen, Qinxian Chen, Xiaoping Li, Jianhua Guan, Xiangmeng Chen, Enming Cui, Ronggang Li, et al., "Preoperative prediction of lymphovascular invasion in invasive breast cancer with dynamic contrast-enhanced-MRI-based radiomics," Journal of Magnetic Resonance Imaging, Vol. 50, No. 3, 847-857, 2019.

11. Zhang, Junjie, Guanghui Wang, Jialiang Ren, Zhao Yang, Dandan Li, Yanfen Cui, and Xiaotang Yang, "Multiparametric MRI-based radiomics nomogram for preoperative prediction of lymphovascular invasion and clinical outcomes in patients with breast invasive ductal carcinoma," European Radiology, Vol. 32, No. 6, 4079-4089, 2022.

12. Nijiati, Mayidili, Diliaremu Aihaiti, Aisikaerjiang Huojia, Abudukeyoumujiang Abulizi, Sailidan Mutailifu, Nueramina Rouzi, Guozhao Dai, and Patiman Maimaiti, "MRI-based radiomics for preoperative prediction of lymphovascular invasion in patients with invasive breast cancer," Frontiers in Oncology, Vol. 12, 876624, 2022.

13. Kayadibi, Yasemin, Burak Kocak, Nese Ucar, Yesim Namdar Akan, Emine Yildirim, and Sibel Bektas, "MRI radiomics of breast cancer: Machine learning-based prediction of lymphovascular invasion status," Academic Radiology, Vol. 29, S126-S134, 2022.

14. Li, Chunli, Lirong Song, and Jiandong Yin, "Intratumoral and peritumoral radiomics based on functional parametric maps from breast DCE-MRI for prediction of HER-2 and Ki-67 status," Journal of Magnetic Resonance Imaging, Vol. 54, No. 3, 703-714, 2021.

15. Zhang, Shuhai, Xiaolei Wang, Zhao Yang, Yun Zhu, Nannan Zhao, Yang Li, Jie He, Haitao Sun, and Zongyu Xie, "Intra- and peritumoral radiomics model based on early DCE-MRI for preoperative prediction of molecular subtypes in invasive ductal breast carcinoma: A multitask machine learning study," Frontiers in Oncology, Vol. 12, 905551, 2022.

16. Zhan, Chenao, Yiqi Hu, Xinrong Wang, Huan Liu, Liming Xia, and Tao Ai, "Prediction of axillary lymph node metastasis in breast cancer using intra-peritumoral textural transition analysis based on dynamic contrast-enhanced magnetic resonance imaging," Academic Radiology, Vol. 29, S107-S115, 2022.

17. Jiang, Wenyan, Ruiqing Meng, Yuan Cheng, Haotian Wang, Tingting Han, Ning Qu, Tao Yu, Yang Hou, and Shu Xu, "Intra- and peritumoral based radiomics for assessment of Lymphovascular invasion in invasive breast cancer," Journal of Magnetic Resonance Imaging, Vol. 59, No. 2, 613-625, 2024.

18. Lee, Chia-Yen, Tzu-Fang Chang, Nai-Yun Chang, and Yeun-Chung Chang, "An automated skin segmentation of breasts in dynamic contrast-enhanced magnetic resonance imaging," Scientific Reports, Vol. 8, No. 1, 6159, 2018.

19. Khaled, Roa'a, Joel Vidal, Joan C. Vilanova, and Robert Martí, "A U-Net Ensemble for breast lesion segmentation in DCE MRI," Computers in Biology and Medicine, Vol. 140, 105093, 2022.

20. Si, Tapas, Dipak Kumar Patra, Sukumar Mondal, and Prakash Mukherjee, "Breast DCE-MRI segmentation for lesion detection using chimp optimization algorithm," Expert Systems with Applications, Vol. 204, 117481, 2022.

21. Wang, Shuai, Kun Sun, Li Wang, Liangqiong Qu, Fuhua Yan, Qian Wang, and Dinggang Shen, "Breast tumor segmentation in DCE-MRI with tumor sensitive synthesis," IEEE Transactions on Neural Networks and Learning Systems, Vol. 34, No. 8, 4990-5001, 2023.

22. Si, Tapas and Amit Mukhopadhyay, "Breast DCE-MRI segmentation for lesion detection using clustering with fireworks algorithm," Applications of Artificial Intelligence in Engineering, 17-35, 2021.

23. Du, Yu, Mengjun Cai, Hailing Zha, Baoding Chen, Jun Gu, Manqi Zhang, Wei Liu, Xinpei Liu, Xiaoan Liu, Min Zong, and Cuiying Li, "Ultrasound radiomics-based nomogram to predict lymphovascular invasion in invasive breast cancer: A multicenter, retrospective study," European Radiology, Vol. 34, No. 1, 136-148, 2024.

24. Houvenaeghel, G., M. Cohen, J. M. Classe, F. Reyal, C. Mazouni, N. Chopin, A. Martinez, E. Daraï, C. Coutant, P. E. Colombo, et al., "Lymphovascular invasion has a significant prognostic impact in patients with early breast cancer, results from a large, national, multicenter, retrospective cohort study," ESMO Open, Vol. 6, No. 6, 100316, 2021.

25. Elston, C. W. and I. O. Ellis, "Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: Experience from a large study with long-term follow-up," Histopathology, Vol. 19, No. 5, 403-410, 1991.
doi:10.1111/j.1365-2559.1991.tb00229.x

26. Chong, Huanhuan, Yuda Gong, Xianpan Pan, Aie Liu, Lei Chen, Chun Yang, and Mengsu Zeng, "Peritumoral dilation radiomics of gadoxetate disodium-enhanced MRI excellently predicts early recurrence of hepatocellular carcinoma without macrovascular invasion after hepatectomy," Journal of Hepatocellular Carcinoma, Vol. 8, 545-563, 2021.

27. Zhang, Jiadong, Zhiming Cui, Zhenwei Shi, Yingjia Jiang, Zhiliang Zhang, Xiaoting Dai, Zhenlu Yang, Yuning Gu, Lei Zhou, Chu Han, et al., "A robust and efficient AI assistant for breast tumor segmentation from DCE-MRI via a spatial-temporal framework," Patterns, Vol. 4, No. 9, 100826, 2023.

28. Ding, Jie, Shenglan Chen, Mario Serrano Sosa, Renee Cattell, Lan Lei, Junqi Sun, Prateek Prasanna, Chunling Liu, and Chuan Huang, "Optimizing the peritumoral region size in radiomics analysis for sentinel lymph node status prediction in breast cancer," Academic Radiology, Vol. 29, S223-S228, 2022.

29. Jiang, Tao, Jiangdian Song, Xiaoyu Wang, Shuxian Niu, Nannan Zhao, Yue Dong, Xingling Wang, Yahong Luo, and Xiran Jiang, "Intratumoral and peritumoral analysis of mammography, tomosynthesis, and multiparametric MRI for predicting Ki-67 level in breast cancer: A radiomics-based study," Molecular Imaging and Biology, Vol. 24, 550-559, 2022.

30. Xu, Hao, Jieke Liu, Zhe Chen, Chunhua Wang, Yuanyuan Liu, Min Wang, Peng Zhou, Hongbing Luo, and Jing Ren, "Intratumoral and peritumoral radiomics based on dynamic contrast-enhanced MRI for preoperative prediction of intraductal component in invasive breast cancer," European Radiology, Vol. 32, No. 7, 4845-4856, 2022.

31. Niu, Shuxian, Wenyan Jiang, Nannan Zhao, Tao Jiang, Yue Dong, Yahong Luo, Tao Yu, and Xiran Jiang, "Intra- and peritumoral radiomics on assessment of breast cancer molecular subtypes based on mammography and MRI," Journal of Cancer Research and Clinical Oncology, Vol. 148, 97-106, 2022.

32. Liu, Chunling, Jie Ding, Karl Spuhler, Yi Gao, Mario Serrano Sosa, Meghan Moriarty, Shahid Hussain, Xiang He, Changhong Liang, and Chuan Huang, "Preoperative prediction of sentinel lymph node metastasis in breast cancer by radiomic signatures from dynamic contrast-enhanced MRI," Journal of Magnetic Resonance Imaging, Vol. 49, No. 1, 131-140, 2019.

33. Poellinger, Alexander, Sahra El-Ghannam, Susanne Diekmann, Thomas Fischer, Glen Kristiansen, Florian Fritzsche, Eva Fallenberg, Lars Morawietz, and Felix Diekmann, "Correlation between enhancement characteristics of MR mammography and capillary density of breast lesions," European Journal of Radiology, Vol. 83, No. 12, 2129-2136, 2014.

34. Cheon, Hyejin, Hye Jung Kim, So Mi Lee, Seung Hyun Cho, Kyung Min Shin, Gab Chul Kim, Ji Young Park, and Won Hwa Kim, "Preoperative MRI features associated with lymphovascular invasion in node-negative invasive breast cancer: A propensity-matched analysis," Journal of Magnetic Resonance Imaging, Vol. 46, No. 4, 1037-1044, 2017.

35. Mori, Naoko, Shunji Mugikura, Chiaki Takasawa, Minoru Miyashita, Akiko Shimauchi, Hideki Ota, Takanori Ishida, Atsuko Kasajima, Kei Takase, Tetsuya Kodama, and Shoki Takahashi, "Peritumoral apparent diffusion coefficients for prediction of lymphovascular invasion in clinically node-negative invasive breast cancer," European Radiology, Vol. 26, 331-339, 2016.

36. Zhou, Jiejie, Yang Zhang, Kai-Ting Chang, Kyoung Eun Lee, Ouchen Wang, Jiance Li, Yezhi Lin, Zhifang Pan, Peter Chang, Daniel Chow, et al., "Diagnosis of benign and malignant breast lesions on DCE-MRI by using radiomics and deep learning with consideration of peritumor tissue," Journal of Magnetic Resonance Imaging, Vol. 51, No. 3, 798-809, 2020.

37. Li, Jiaqi, Zhenbin Qiu, Chao Zhang, Sijie Chen, Mengmin Wang, Qiuchen Meng, Haiming Lu, Lei Wei, Hairong Lv, Wenzhao Zhong, and Xuegong Zhang, "ITHscore: Comprehensive quantification of intra-tumor heterogeneity in NSCLC by multi-scale radiomic features," European Radiology, Vol. 33, No. 2, 893-903, 2023.

38. Huang, Yao, Xiaoxia Wang, Ying Cao, Xiaosong Lan, Xiaofei Hu, Fangsheng Mou, Huifang Chen, Xueqin Gong, Lan Li, Sun Tang, et al., "Nomogram for predicting neoadjuvant chemotherapy response in breast cancer using mri-based intratumoral heterogeneity quantification," Radiology, Vol. 315, No. 1, e241805, 2025.

39. Lin, Zekun, Weiming Lin, and Fuchun Jiang, "Yolov8-dec: enhancing brain tumor object detection accuracy in magnetic resonance imaging," Progress In Electromagnetics Research M, Vol. 129, 43-52, 2024.
doi:10.2528/PIERM24061204

40. Sasikala, Shanmugam, Kandasamy Karthika, Shanmugam Arunkumar, Karunakaran Anusha, Srinivasan Adithya, and Ahmed Jamal Abdullah Al-Gburi, "Design and analysis of a low-profile tapered slot uwb vivaldi antenna for breast cancer diagnosis," Progress In Electromagnetics Research M, Vol. 124, 43-51, 2024.
doi:10.2528/PIERM23110702