1. Battaglia, Giada Maria, Andrea Francesco Morabito, Roberta Palmeri, and Tommaso Isernia, "Effective non-iterative phase retrieval of 2-D bandlimited signals with applications to antenna characterization and diagnostics," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 8, 6444-6453, 2023.
doi:10.1109/TAP.2023.3283044
2. Chen, Xudong, Computational Methods for Electromagnetic Inverse Scattering, John Wiley & Sons, 2018.
3. Li, Maokun, Rui Guo, Ke Zhang, Zhichao Lin, Fan Yang, Shenheng Xu, Xudong Chen, Andrea Massa, and Aria Abubakar, "Machine learning in electromagnetics with applications to biomedical imaging: A review," IEEE Antennas and Propagation Magazine, Vol. 63, No. 3, 39-51, 2021.
doi:10.1109/MAP.2020.3043469
4. Chen, Xudong, Zhun Wei, Li Maokun, and Paolo Rocca, "A review of deep learning approaches for inverse scattering problems (invited review)," Electromagnetic Waves, Vol. 167, 67-81, 2020.
doi:org/10.2528/PIER20030705
5. Bevacqua, Martina Teresa, Simona Di Meo, Lorenzo Crocco, Tommaso Isernia, and Marco Pasian, "Millimeter-waves breast cancer imaging via inverse scattering techniques," IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, Vol. 5, No. 3, 246-253, 2021.
doi:10.1109/JERM.2021.3052096
6. Benny, Ria, Thathamkulam A. Anjit, and Palayyan Mythili, "Deep learning based non-iterative solution to the inverse problem in microwave imaging," Progress In Electromagnetics Research M, Vol. 109, 231-240, 2022.
doi:10.2528/PIERM22010905
7. Zhou, Huilin, Xin Huang, and Yuhao Wang, "Nonlinear inverse scattering imaging method based on iterative multi-scale network," Chinese Journal of Radio Science, Vol. 37, No. 6, 1019-1024, 2022.
doi:10.12265/j.cjors.2021291
8. Guo, Rui, Tianyao Huang, Maokun Li, Haiyang Zhang, and Yonina C. Eldar, "Physics-embedded machine learning for electromagnetic data imaging: Examining three types of data-driven imaging methods," IEEE Signal Processing Magazine, Vol. 40, No. 2, 18-31, 2023.
9. Zhou, Yulong, Yu Zhong, Zhun Wei, Tiantian Yin, and Xudong Chen, "An improved deep learning scheme for solving 2-D and 3-D inverse scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 5, 2853-2863, 2021.
doi:10.1109/TAP.2020.3027898
10. Xu, Kuiwen, Zemin Qian, Yu Zhong, Jiangtao Su, Haijun Gao, and Wenjun Li, "Learning-assisted inversion for solving nonlinear inverse scattering problem," IEEE Transactions on Microwave Theory and Techniques, Vol. 71, No. 6, 2384-2395, 2023.
doi:10.1109/TMTT.2022.3228945
11. Guo, Rui, Zhichao Lin, Tao Shan, Xiaoqian Song, Maokun Li, Fan Yang, Shenheng Xu, and Aria Abubakar, "Physics embedded deep neural network for solving full-wave inverse scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 8, 6148-6159, 2022.
12. Yao, He Ming, Wei E. I. Sha, and Lijun Jiang, "Two-step enhanced deep learning approach for electromagnetic inverse scattering problems," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 11, 2254-2258, 2019.
doi:10.1109/LAWP.2019.2925578
13. Gao, Yu, Hongyu Liu, Xianchao Wang, and Kai Zhang, "On an artificial neural network for inverse scattering problems," Journal of Computational Physics, Vol. 448, 110771, 2022.
doi:10.1016/j.jcp.2021.110771
14. Salucci, Marco, Manuel Arrebola, Tao Shan, and Maokun Li, "Artificial intelligence: New frontiers in real-time inverse scattering and electromagnetic imaging," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 8, 6349-6364, 2022.
doi:10.1109/TAP.2022.3177556
15. Ronneberger, Olaf, Philipp Fischer, and Thomas Brox, "U-net: Convolutional networks for biomedical image segmentation," Medical Image Computing and Computer-Assisted Intervention --- MICCAI 2015, 234-241, 2015.
16. Xia, Yixin and Siyuan He, "A lightweight deep learning model for full-wave nonlinear inverse scattering problems," Progress In Electromagnetics Research M, Vol. 128, 83-88, 2024.
doi:10.2528/PIERM24071701
17. Sun, Yu, Zhihao Xia, and Ulugbek S. Kamilov, "Efficient and accurate inversion of multiple scattering with deep learning," Optics Express, Vol. 26, No. 11, 14678-14688, 2018.
doi:10.1364/OE.26.014678
18. Wei, Zhun and Xudong Chen, "Deep-learning schemes for full-wave nonlinear inverse scattering problems," IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, No. 4, 1849-1860, 2019.
doi:10.1109/TGRS.2018.2869221
19. Woo, Sanghyun, Jongchan Park, Joon-Young Lee, and In So Kweon, "Cbam: Convolutional block attention module," Proceedings of the European Conference on Computer Vision (ECCV), 3-19, 2018.
20. Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin, "Attention is all you need," Advances in Neural Information Processing Systems, Vol. 30, No. 1, 2, 2017.
21. Dosovitskiy, Alexey, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. "An image is worth 16 x 16 words: Transformers for image recognition at scale," ArXiv Preprint ArXiv:2010.11929, 2020.
22. LeCun, Y., C. Cortes, C. Burges, et al. "Mnist handwritten digit database,", 2010.
23. Cakoni, Fioralba, David Colton, and Houssem Haddar, Inverse Scattering Theory and Transmission Eigenvalues, SIAM, 2022.
24. Cohen, Gregory, Saeed Afshar, Jonathan Tapson, and André van Schaik, "EMNIST: Extending MNIST to handwritten letters," 2017 International Joint Conference on Neural Networks (IJCNN), 2921-2926, Anchorage, AK, USA, 2017.
doi:10.1109/IJCNN.2017.7966217