Vol. 127
Latest Volume
All Volumes
PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2025-07-06
Generation of Dual-Polarized Vortex Beams in the X-Band Using Reflective Metasurface
By
Progress In Electromagnetics Research Letters, Vol. 127, 1-7, 2025
Abstract
This paper presents a single-layer reflective metasurface for generating dual-linearly polarized orbital angular momentum (OAM) beams with mode number l=-1 at X-band. Phase modulation is achieved by adjusting the unit cell dimensions, which efficiently converts linearly polarized waves into vortex waves with the desired OAM mode. The proposed unit cell integrates a compact `米'-shaped inner patch with a square frame, with a compact size of 0.4λ0 × 0.4λ0, enabling independent control of both x-polarized and y-polarized waves. By varying the unit size,a broad phase shift range of 374° is achieved at 8-12 GHz. Based on phase compensation principles, the designed metasurface array is successfully generates dual-polarized vortex waves at X-band. The proposed metasurface exhibits high gain, narrow divergence angle, bandwidth, and dual-polarization capability, demonstrating significant potential for OAM wave multiplexing in wireless communication systems.
Citation
Shuman Li, Leyuan Li, Ying Sun, Zhuopeng Wang, and Lin Shao, "Generation of Dual-Polarized Vortex Beams in the X-Band Using Reflective Metasurface," Progress In Electromagnetics Research Letters, Vol. 127, 1-7, 2025.
doi:10.2528/PIERL25043003
References

1. Yao, Alison M. and Miles J. Padgett, "Orbital angular momentum: Origins, behavior and applications," Advances in Optics and Photonics, Vol. 3, No. 2, 161-204, May 2011.

2. Mohammadi, Siavoush Mohaghegh, Lars K. S. Daldorff, Jan E. S. Bergman, Roger L. Karlsson, Bo Thide, Kamyar Forozesh, Tobia D. Carozzi, and Brett Isham, "Orbital angular momentum in radio --- A system study," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 565-572, Feb. 2010.

3. Lee, Ingeun, Ashwini Sawant, and Eunmi Choi, "High-directivity orbital angular momentum antenna for millimeter-wave wireless communications," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 7, 4189-4194, Jul. 2021.

4. Wang, Y., X. Sun, and L. Liu, "Millimeter-wave orbital angular momentum: Generation, detection, and applications: A review on millimeter wave orbital angular momentum antennas," IEEE Microwave Magazine, Vol. 25, No. 1, 37-57, Jan. 2024.
doi:10.1109/MMM.2023.3269619

5. Liu, Dandan, Liangqi Gui, Zixiao Zhang, Han Chen, Guochao Song, and Tao Jiang, "Multiplexed OAM wave communication with two-OAM-mode antenna systems," IEEE Access, Vol. 7, 4160-4166, Dec. 2018.

6. Tu, Jiajing, Shecheng Gao, Zhuo Wang, Zhengyong Liu, Wei Li, Cheng Du, Weiping Liu, Zhaohui Li, Changyuan Yu, Hwayaw Tam, and Chao Lu, "Bend-insensitive grapefruit-type holey ring-core fiber for weakly-coupled OAM mode division multiplexing transmission," Journal of Lightwave Technology, Vol. 38, No. 16, 4497-4503, Apr. 2020.

7. Wang, Yingning, Yao Lu, Changjing Bao, Wenpu Geng, Yuxi Fang, Baiwei Mao, Zhi Wang, Yan-Ge Liu, Hao Huang, Yongxiong Ren, Zhongqi Pan, and Yang Yue, "Hollow ring-core photonic crystal fiber with > 500 OAM modes over 360-nm communications bandwidth," IEEE Access, Vol. 9, 66999-67005, Apr. 2021.

8. Wang, Yingning, Wenqian Zhao, Wenpu Geng, Yuxi Fang, Changjing Bao, Zhi Wang, Hao Zhang, Yongxiong Ren, Zhongqi Pan, and Yang Yue, "Air-core ring fiber guiding > 400 radially fundamental OAM modes across S+C+L bands," IEEE Access, Vol. 9, 75617-75625, May 2021.

9. Mair, Alois, Alipasha Vaziri, Gregor Weihs, and Anton Zeilinger, "Entanglement of the orbital angular momentum states of photons," Nature, Vol. 412, No. 6844, 313-316, Jul. 2001.
doi:10.1038/35085529

10. Zhang, Zhuofan, Shilie Zheng, Yiling Chen, Xiaofeng Jin, Hao Chi, and Xianmin Zhang, "The capacity gain of orbital angular momentum based multiple-input-multiple-output system," Scientific Reports, Vol. 6, No. 1, 25418, May 2016.

11. Liang, Y., F. Zhang, and J. Gu, "Integratable quarter-wave plates enable one-way angular momentum conversion," Scientific Reports, Vol. 6, No. 7, 24959, Apr. 2016.
doi:10.1038/srep24959

12. Lin, Mingtuan, Yue Gao, Peiguo Liu, and Jibin Liu, "Theoretical analyses and design of circular array to generate orbital angular momentum," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 7, 3510-3519, Jul. 2017.

13. Meng, Xiangshuai, Xiaoming Chen, Lin Yang, Wei Xue, Anxue Zhang, Wei E. I. Sha, and Qiang Cheng, "Launcher of high-order Bessel vortex beam carrying orbital angular momentum by designing anisotropic holographic metasurface," Applied Physics Letters, Vol. 117, No. 24, 243503, Dec. 2020.

14. Yu, Shixing, Long Li, and Guangming Shi, "Dual-polarization and dual-mode orbital angular momentum radio vortex beam generated by using reflective metasurface," Applied Physics Express, Vol. 9, No. 8, 082202, Jul. 2016.

15. Feng, Qiang, Xudong Kong, Mingming Shan, Yifeng Lin, Long Li, and Tie Jun Cui, "Multi-orbital-angular-momentum-mode vortex wave multiplexing and demultiplexing with shared-aperture reflective metasurfaces," Physical Review Applied, Vol. 17, No. 3, 034017, Mar. 2022.

16. Liu, Xiaobin, Sijia Li, Chengyuan He, Zhuoyue Li, Guoshuai Huang, and Xiangyu Cao, "Multiple orbital angular momentum beams with high-purity of transmission-coding metasurface," Advanced Theory and Simulations, Vol. 6, No. 4, 2200842, Feb. 2023.

17. Xu, S.-Z., Y. Shen, Z. Wei, and S. Hu, "Low-profile circularly-polarized hybrid antenna for beam-switching and OAM mode-switching," IEEE Transactions on Antennas and Propagation, Vol. 73, No. 1, 33-43, Aug. 2024.
doi:10.1109/TAP.2024.3444283

18. Li, R.-C., M. Huang, and Y. Zou, "Broadband continuous integer- and fractional-order multimode OAM beam generator via a metasurface," ACS Photonics, Vol. 12, No. 2, 870-878, Jan. 2025.
doi:10.1021/acsphotonics.4c01823

19. Pozar, D. M., "Bandwidth of reflectarrays," Electronics Letters, Vol. 39, No. 21, 1490-1491, Oct. 2003.

20. Yu, Shixing, Long Li, Guangming Shi, Cheng Zhu, Xiaoxiao Zhou, and Yan Shi, "Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain," Applied Physics Letters, Vol. 108, No. 12, 121903, Mar. 2016.

21. Yang, Ling-Jun, Sheng Sun, and Wei E. I. Sha, "Ultrawideband reflection-type metasurface for generating integer and fractional orbital angular momentum," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 2166-2175, Mar. 2020.

22. Jack, B., M. J. Padgett, and S. Franke-Arnold, "Angular diffraction," New Journal of Physics, Vol. 10, No. 10, 103013, Oct. 2008.

23. Ishfaq, Muhammad, Xiuping Li, Zihang Qi, Wenyu Zhao, Abdul Aziz, Liangjie Qiu, and Seleemullah Memon, "A transmissive metasurface generating wideband OAM vortex beam in the Ka-band," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 8, 2007-2011, Aug. 2023.

24. Huang, Hui-Fen and Shuai-Nan Li, "High-efficiency planar reflectarray with small-size for OAM generation at microwave range," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 3, 432-436, Mar. 2019.

25. Fu, Cheng, Jianing Zhao, Fang Li, and Hao Li, "A broadband vortex beam generator based on single-layer hybrid phase-turning metasurface," Micromachines, Vol. 14, No. 2, 465, Feb. 2023.

26. Lei, Xing Yu and Yu Jian Cheng, "High-efficiency and high-polarization separation reflectarray element for OAM-folded antenna application," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1357-1360, Dec. 2016.

27. Ali, Ali, Mohsen Khalily, Demos Serghiou, and Rahim Tafazolli, "Reflective metasurface with steered OAM beams for THz communications," IEEE Access, Vol. 11, 12394-12401, Feb. 2023.