Vol. 128
Latest Volume
All Volumes
PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2025-10-26
Improved Active-Disturbance Rejection Cascade Control of PMSM Based on New Fast Super-Twisting Non-Singular Terminal Sliding Mode Control Law
By
Progress In Electromagnetics Research Letters, Vol. 128, 1-9, 2025
Abstract
To enhance the disturbance rejection capability and robust stability of PMSM under time-varying disturbances, an improved super-twisting higher-order sliding mode active disturbance rejection cascade control strategy is proposed. Firstly, a second-order mathematical model of the PMSM speed-current dual-loop system is established. Secondly, to address the oscillation issues caused by differentiation of the reference speed in conventional linear error feedback control, a composite sliding mode error feedback control law is designed by integrating the fast super-twisting (FST) algorithm and the fast non-singular terminal sliding mode control (FNFTSMC) method. The control law effectively suppresses system chattering and improves dynamic response. Meanwhile, an improved extended state observer (IESO) is constructed based on deviation control theory, which enhances real-time compensation of the cascade controller by optimizing convergence speed and disturbance estimation accuracy. Finally, hardware-in-the-loop (HIL) simulation results on an RT-LAB platform demonstrate that the proposed method outperforms traditional strategies in both dynamic performance and disturbance rejection, providing a viable solution for high-performance PMSM drive applications.
Citation
Junqin Liu, Zhentong Wang, Haicheng Zhong, Feng Deng, Kaihui Zhao, and Xiangfei Li, "Improved Active-Disturbance Rejection Cascade Control of PMSM Based on New Fast Super-Twisting Non-Singular Terminal Sliding Mode Control Law," Progress In Electromagnetics Research Letters, Vol. 128, 1-9, 2025.
doi:10.2528/PIERL25070303
References

1. Zhang, Bo, Rong Qi, and Hui Lin, "Back-stepping sliding mode control of laser cutting permanent magnet linear servo control system," Transactions of China Electrotechnical Society, Vol. 33, No. 3, 642-651, 2018.
doi:10.19595/j.cnki.1000-6753.tces.161675

2. Cheng, Siyuan, Haoze Wang, and Yajie Jiang, "Improved orthogonal flux corrector-based rotor flux estimation in PMSM sensorless control," Progress In Electromagnetics Research Letters, Vol. 121, 57-63, 2024.
doi:10.2528/pierl24022801

3. He, Yingshen, Kaihui Zhao, Zhixuan Yi, and Yishan Huang, "Improved terminal sliding mode control of PMSM dual-inertia system with acceleration feedback based on finite-time ESO," Progress In Electromagnetics Research M, Vol. 134, 21-30, 2025.
doi:10.2528/pier25040405

4. Li, Xiangfei, Junqin Liu, Kaihui Zhao, Yang Yin, and Lihua Zou, "Improved non-singular fast terminal sensor-less sliding mode control of IPMSM considering external disturbance and parameter perturbation," Progress In Electromagnetics Research B, Vol. 102, 81-98, 2023.
doi:10.2528/pierb23050202

5. Wei, Huifang and Limei Wang, "Adaptive fuzzy neural network time-varying sliding mode control for permanent magnet linear synchronous motor," Transactions of China Electrotechnical Society, Vol. 37, No. 4, 861-869, 2022.

6. Wang, Daohan, Chen Peng, Bingdong Wang, Z. Feng, and F. Zhang, "Research on a novel interior permanent magnet machine with segmented rotor to mitigate torque ripple and electromagnetic vibration," Proceedings of the CSEE, Vol. 42, No. 14, 5289-5299, 2022.

7. Wang, Jiaoyang, Renjun Zhou, and Junqin Liu, "New non-singular fast terminal sliding mode control of permanent magnet synchronous motor based on super-twisting sliding mode observer," Progress In Electromagnetics Research C, Vol. 146, 151-162, 2024.
doi:10.2528/pierc24061501

8. Li, Xiangfei, Junqin Liu, Kaihui Zhao, Yang Yin, and Lihua Zou, "An improved model-free sliding mode control algorithm of super-twisting for SPMSM," Progress In Electromagnetics Research C, Vol. 135, 195-210, 2023.
doi:10.2528/pierc23061502

9. Wang, X., Z. Yang, X. Sun, and S. Zhan, "Research on the control system of bearing-less nduction motor based on improved active disturbance rejection control," Progress In Electromagnetics Research C, Vol. 141, 123-132, 2024.
doi:10.2528/pierc23121601

10. Han, Jing Qing, "Auto disturbance rejection controller and it's applications," Control and Decision, Vol. 13, No. 1, 19-23, 1998.

11. Kang, E., S. Shi, and S. Li, "Suppression strategy for uncertain current disturbances in PMSM based on frequent adaptive active disturbance rejection controller," Electric Machines and Control, Vol. 29, No. 4, 124-134, 2025.
doi:10.15938/i.emc.2025.04.012

12. Zhao, Kaihui, Wenchang Liu, Tonghuan Yin, Ruirui Zhou, and Wangke Dai, "Model-free sliding mode control for PMSM drive system based on ultra-local model," Energy Engineering: Journal of the Association of Energy Engineers, Vol. 119, No. 2, 767-780, 2022.
doi:10.32604/ee.2021.018617

13. Wu, Yun-Jie, Jing-Xing Zuo, and Liang-Hua Sun, "Adaptive terminal sliding mode control for hypersonic flight vehicles with strictly lower convex function based nonlinear disturbance observer," ISA Transactions, Vol. 71, 215-226, 2017.
doi:10.1016/j.isatra.2017.08.008

14. Zhao, K. H., W. K. Dai, R. R. Zhou, Aojie Leng, Wenchang Liu, Pengqi Qiu, Gang Huang, and Gongping Wu, "Novel model-free sliding mode control of permanent magnet synchronous motor based on extended sliding mode disturbance observer," Proceedings of the CSEE, Vol. 42, No. 6, 2375-2386, 2022.

15. Wu, Zhaolong, Zhaobing Chen, Bohan Xu, Shushuai Pang, and Feng Lin, "Realization of control algorithm for vehicle optoelectronic tracking platform based on sliding mode control and active disturbance rejection control optimized by differential evolution algorithm," IEEE Access, Vol. 11, 60386-60397, 2023.
doi:10.1109/access.2023.3286868

16. Cheng, Zhenxing, Liyi Li, Chengbao Zhong, Jinglong Wang, Xun Bai, and Jiaxi Liu, "Adaptive hybrid active disturbance rejection speed control for vehicle PMSM electric propulsion system under uncertain disturbances," IEEE Transactions on Energy Conversion, 2025.
doi:10.1109/tec.2025.3558820

17. Li, Z., H. Chen, Y. Qi, et al. "Torque sharing function control strategy for switched reluctance motor based on active disturbance rejection sliding mode control," Transactions of China Electrotechnical Society, Vol. 39, No. 18, 5639-5656, 2024.
doi:10.19595/j.cnki.1000-6753.tces.231277

18. Feng, Xugang, Penghui Huang, Zechen Zhang, et al. "Sliding mode active disturbance rejection control of generator sets based on GA fuzzy RBF," Journal of Instrumentation, Vol. 44, No. 8, 319-328, 2023.

19. Guo, Xin, Shoudao Huang, Kaiyuan Lu, Yu Peng, Haixin Wang, and Junyou Yang, "A fast sliding mode speed controller for PMSM based on new compound reaching law with improved sliding mode observer," IEEE Transactions on Transportation Electrification, Vol. 9, No. 2, 2955-2968, 2023.
doi:10.1109/tte.2022.3213562

20. Sun, D. and Y. Zhang, "Improvement and observation accuracy analysis of linear extended state observer," Journal of National University of Defense Technology, Vol. 39, No. 6, 111-117, 2017.

21. Zhao, Kaihui, Mengjie Qiao, Yuying Lyu, Xin You, Changfan Zhang, and Jian Zheng, "Model-free super-twisting fast integral terminal sliding mode control for PMSM," Journal of Electronic Measurement and Instrumentation, Vol. 38, No. 5, 64-74, 2024.

22. Li, Xiangfei, Zhixuan Yi, Junqin Liu, Kaihui Zhao, and Lihua Zou, "Deep flux weakening of IPMSM based on feedback super-twisting non-singular fast terminal sliding mode control," Journal of Electronic Measurement and Instrumentation, Vol. 38, No. 11, 132-145, 2024.