Vol. 128
Latest Volume
All Volumes
PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2025-11-12
Research on Orbital Angular Momentum of Low-Profile Ultra-Wideband Reflective Metasurface
By
Progress In Electromagnetics Research Letters, Vol. 128, 26-34, 2025
Abstract
With the increasing demand for high-capacity communication systems, vortex beams endowed with orbital angular momentum (OAM) have emerged as a promising candidate for enhancing channel capacity of communication systems. Persistent limitations of conventional OAM generators, such as narrow bandwidth, single-mode constraints, and decreased purity in high-order OAM modes are addressed. In this work, by combining Pancharatnam-Berry (PB) phase theory and equivalent circuit, we design a metasurface unit with gradient phase compensation. The metasurface unit overcomes the bandwidth limits of the resonant structures, achieving 360˚ linear phase modulation over 8-20 GHz (85.7% relative bandwidth) and allowing vortex waves with multiple OAM modes and high order mode purity. Quantitative assessment of modal purity via OAM spectral decomposition demonstrates exceptional agreement between experimental measurements and full-wave simulations, thereby corroborating the theoretical framework and underscoring the methodology's potential for practical implementation.
Citation
Rongxian Bai, Minquan Li, Shuang Xiao, Xin Qu, Chen Li, Guocui Zhu, Yongkang Yuan, Boyan Zhang, and Zhonghui Li, "Research on Orbital Angular Momentum of Low-Profile Ultra-Wideband Reflective Metasurface," Progress In Electromagnetics Research Letters, Vol. 128, 26-34, 2025.
doi:10.2528/PIERL25080603
References

1. Allen, L., M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Physical Review A, Vol. 45, No. 11, 8185, 1992.
doi:10.1103/physreva.45.8185

2. Yang, Yuanjie, Yu-Xuan Ren, Mingzhou Chen, Yoshihiko Arita, and Carmelo Rosales-Guzmán, "Optical trapping with structured light: A review," Advanced Photonics, Vol. 3, No. 3, 034001, 2021.
doi:10.1117/1.ap.3.3.034001

3. Forbes, Andrew, Michael De Oliveira, and Mark R. Dennis, "Structured light," Nature Photonics, Vol. 15, No. 4, 253-262, 2021.
doi:10.1038/s41566-021-00780-4

4. Franke-Arnold, Sonja, Stephen M. Barnett, Miles J. Padgett, and L. Allen, "Two-photon entanglement of orbital angular momentum states," Physical Review A, Vol. 65, No. 3, 033823, 2002.
doi:10.1103/physreva.65.033823

5. Guo, Zhong-Yi, Shi-Liang Qu, Zheng-He Sun, and Shu-Tian Liu, "Superposition of orbital angular momentum of photons by a combined computer-generated hologram fabricated in silica glass with femtosecond laser pulses," Chinese Physics B, Vol. 17, No. 11, 4199, 2008.
doi:10.1088/1674-1056/17/11/040

6. Zhang, Chao and Yufei Zhao, "Orbital angular momentum nondegenerate index mapping for long distance transmission," IEEE Transactions on Wireless Communications, Vol. 18, No. 11, 5027-5036, 2019.
doi:10.1109/twc.2019.2927672

7. Thidé, B., H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Ya. N. Istomin, N. H. Ibragimov, and R. Khamitova, "Utilization of photon orbital angular momentum in the low-frequency radio domain," Physical Review Letters, Vol. 99, No. 8, 087701, 2007.
doi:10.1103/physrevlett.99.087701

8. Tamburini, Fabrizio, Elettra Mari, Anna Sponselli, Bo Thidé, Antonio Bianchini, and Filippo Romanato, "Encoding many channels on the same frequency through radio vorticity: First experimental test," New Journal of Physics, Vol. 14, No. 3, 033001, 2012.
doi:10.1088/1367-2630/14/3/033001

9. Tamburini, Fabrizio, Elettra Mari, Bo Thidé, Cesare Barbieri, and Filippo Romanato, "Experimental verification of photon angular momentum and vorticity with radio techniques," Applied Physics Letters, Vol. 99, No. 20, 204102, 2011.
doi:10.1063/1.3659466

10. Bennis, A., R. Niemiec, C. Brousseau, K. Mahdjoubi, and O. Emile, "Flat plate for OAM generation in the millimeter band," 2013 7th European Conference on Antennas and Propagation (EuCAP), 3203-3207, Gothenburg, Sweden, 2013.

11. Deng, Changjiang, Wenhua Chen, Zhijun Zhang, Yue Li, and Zhenghe Feng, "Generation of OAM radio waves using circular Vivaldi antenna array," International Journal of Antennas and Propagation, Vol. 2013, No. 1, 847859, 2013.
doi:10.1155/2013/847859

12. Wei, Wenlong, Kourosh Mahdjoubi, Christian Brousseau, and Olivier Emile, "Generation of OAM waves with circular phase shifter and array of patch antennas," Electronics Letters, Vol. 51, No. 6, 442-443, 2015.
doi:10.1049/el.2014.4425

13. Guo, Zhi-Gui and Guo-Min Yang, "Radial uniform circular antenna array for dual-mode OAM communication," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 404-407, 2016.
doi:10.1109/lawp.2016.2581204

14. Zhang, Weite, Shilie Zheng, Xiaonan Hui, Yiling Chen, Xiaofeng Jin, Hao Chi, and Xianmin Zhang, "Four-OAM-mode antenna with traveling-wave ring-slot structure," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 194-197, 2016.
doi:10.1109/lawp.2016.2569540

15. Berry, M. V., "The adiabatic phase and Pancharatnam's phase for polarized light," Journal of Modern Optics, Vol. 34, No. 11, 1401-1407, 1987.
doi:10.1080/09500348714551321

16. Yu, Nanfang, Patrice Genevet, Mikhail A. Kats, Francesco Aieta, Jean-Philippe Tetienne, Federico Capasso, and Zeno Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, No. 6054, 333-337, 2011.
doi:10.1126/science.1210713

17. Genevet, Patrice, Nanfang Yu, Francesco Aieta, Jiao Lin, Mikhail A. Kats, Romain Blanchard, Marlan O. Scully, Zeno Gaburro, and Federico Capasso, "Ultra-thin plasmonic optical vortex plate based on phase discontinuities," Applied Physics Letters, Vol. 100, No. 1, 013101, 2012.
doi:10.1063/1.3673334

18. Yu, Shixing, Long Li, and Na Kou, "Generation, reception and separation of mixed-state orbital angular momentum vortex beams using metasurfaces," Optical Materials Express, Vol. 7, No. 9, 3312-3321, 2017.
doi:10.1364/ome.7.003312

19. Zhao, Huan, Baogang Quan, Xinke Wang, Changzhi Gu, Junjie Li, and Yan Zhang, "Demonstration of orbital angular momentum multiplexing and demultiplexing based on a metasurface in the terahertz band," ACS Photonics, Vol. 5, No. 5, 1726-1732, 2017.
doi:10.1021/acsphotonics.7b01149

20. Wu, Geng-Bo, Ka Fai Chan, Kam Man Shum, and Chi Hou Chan, "Millimeter-wave holographic flat lens antenna for orbital angular momentum multiplexing," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 8, 4289-4303, 2021.
doi:10.1109/tap.2020.3048527

21. Yao, Yu, Xianling Liang, Maohua Zhu, Weiren Zhu, Junping Geng, and Ronghong Jin, "Analysis and experiments on reflection and refraction of orbital angular momentum waves," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2085-2094, 2019.
doi:10.1109/tap.2019.2896760

22. Menzel, Christoph, Carsten Rockstuhl, and Falk Lederer, "Advanced jones calculus for the classification of periodic metamaterials," Physical Review A --- Atomic, Molecular, and Optical Physics, Vol. 82, No. 5, 053811, 2010.
doi:10.1103/physreva.82.053811

23. Chen, Menglin L. N., Li Jun Jiang, and Wei E. I. Sha, "Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency," Journal of Applied Physics, Vol. 119, No. 6, 064506, 2016.
doi:10.1063/1.4941696

24. Luukkonen, Olli, Constantin Simovski, GÉrard Granet, George Goussetis, Dmitri Lioubtchenko, Antti V. Raisanen, and Sergei A. Tretyakov, "Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1624-1632, 2008.
doi:10.1109/tap.2008.923327

25. Barrera, Mario A. Rodriguez and Walter Pereira Carpes, "Bandwidth for the equivalent circuit model in square-loop frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 11, 5932-5939, 2017.
doi:10.1109/tap.2017.2754418

26. Ferreira, David, Rafael F. S. Caldeirinha, Iñigo Cuiñas, and Telmo R. Fernandes, "Square loop and slot frequency selective surfaces study for equivalent circuit model optimization," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 9, 3947-3955, 2015.
doi:10.1109/tap.2015.2444420

27. Langley, R. J. and E. A. Parker, "Equivalent circuit model for arrays of square loops," Electronics Letters, Vol. 18, No. 7, 294-296, 1982.
doi:10.1049/el:19820201

28. Ran, Yuzhou, Jiangang Liang, Tong Cai, and Haipeng Li, "High-performance broadband vortex beam generator using reflective Pancharatnam-Berry metasurface," Optics Communications, Vol. 427, 101-106, 2018.
doi:10.1016/j.optcom.2018.06.041

29. Chen, Guan-Tao, Yong-Chang Jiao, and Gang Zhao, "A reflectarray for generating wideband circularly polarized orbital angular momentum vortex wave," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 1, 182-186, 2019.
doi:10.1109/lawp.2018.2885345

30. Li, Bin, Peng Fei Jing, Li Qing Sun, Kwok Wa Leung, and Xin Lv, "3D printed OAM reflectarray using half-wavelength rectangular dielectric element," IEEE Access, Vol. 8, 142892-142899, 2020.
doi:10.1109/access.2020.3013678

31. Yu, Zhen-Yu, Yun-Hua Zhang, and Huo-Tao Gao, "A high-efficiency and broadband folded reflectarray based on an anisotropic metasurface for generating orbital angular momentum vortex beams," IEEE Access, Vol. 9, 87360-87369, 2021.
doi:10.1109/access.2021.3088885

32. Ishfaq, Muhammad, Xiuping Li, Zihang Qi, Wenyu Zhao, Abdul Aziz, Liangjie Qiu, and Seleemullah Memon, "A transmissive metasurface generating wideband OAM vortex beam in the Ka-band," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 8, 2007-2011, 2023.
doi:10.1109/lawp.2023.3271675