1. Rocca, P., R. J. Mailloux, and G. Toso, "GA-based optimization of irregular subarray layouts for wideband phased arrays design," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 131-134, 2015.
doi:10.1109/lawp.2014.2356855 Google Scholar
2. Xiong, Jie, Wen-Qin Wang, Huaizong Shao, and Hui Chen, "Frequency diverse array transmit beampattern optimization with genetic algorithm," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 469-472, 2016.
doi:10.1109/lawp.2016.2584078 Google Scholar
3. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 2, 397-407, 2004.
doi:10.1109/tap.2004.823969 Google Scholar
4. Poli, Lorenzo, Paolo Rocca, Luca Manica, and Andrea Massa, "Handling sideband radiations in time-modulated arrays through particle swarm optimization," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 4, 1408-1411, 2010.
doi:10.1109/tap.2010.2041165 Google Scholar
5. Zhang, Si-Rui, Yi-Xuan Zhang, and Chao-Yi Cui, "Efficient multiobjective optimization of time-modulated array using a hybrid particle swarm algorithm with convex programming," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 11, 1842-1846, 2020.
doi:10.1109/lawp.2020.3014366 Google Scholar
6. Quevedo-Teruel, O. and E. Rajo-Iglesias, "Ant colony optimization in thinned array synthesis with minimum sidelobe level," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 349-352, 2006.
doi:10.1109/lawp.2006.880693 Google Scholar
7. Gregory, Micah D., Zikri Bayraktar, and Douglas H. Werner, "Fast optimization of electromagnetic design problems using the covariance matrix adaptation evolutionary strategy," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 4, 1275-1285, 2011.
doi:10.1109/tap.2011.2109350 Google Scholar
8. Wang, Jian, Xue-Song Yang, Xiao Ding, and Bing-Zhong Wang, "Antenna radiation characteristics optimization by a hybrid topological method," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 2843-2854, 2017.
doi:10.1109/tap.2017.2688918 Google Scholar
9. Wang, Zhongbao, Shaojun Fang, Qiang Wang, and Hongmei Liu, "An ANN-based synthesis model for the single-feed circularly-polarized square microstrip antenna with truncated corners," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 12, 5989-5992, 2012.
doi:10.1109/tap.2012.2214195 Google Scholar
10. Xiao, Li-Ye, Wei Shao, Zhi-Xin Yao, and Shanshan Gao, "Data mining techniques in artificial neural network for UWB antenna design," Radioengineering, Vol. 27, No. 1, 70-78, 2018.
doi:10.13164/re.2018.0070 Google Scholar
11. Xiao, Li-Ye, Wei Shao, Fu-Long Jin, and Bing-Zhong Wang, "Multiparameter modeling with ANN for antenna design," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 7, 3718-3723, 2018.
doi:10.1109/tap.2018.2823775 Google Scholar
12. Feng, Feng, Chao Zhang, Jianguo Ma, and Qi-Jun Zhang, "Parametric modeling of EM behavior of microwave components using combined neural networks and pole-residue-based transfer functions," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 1, 60-77, 2016.
doi:10.1109/tmtt.2015.2504099 Google Scholar
13. Liu, Yan-Fang, Lin Peng, and Wei Shao, "An efficient knowledge-based artificial neural network for the design of circularly polarized 3-D-printed lens antenna," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 7, 5007-5014, 2022.
doi:10.1109/tap.2022.3140313 Google Scholar
14. You, Xi Chong and Feng Han Lin, "Inverse design of reflective metasurface antennas using deep learning from small-scale statistically random pico-cells," Microwave and Optical Technology Letters, Vol. 66, No. 2, e34068, 2024.
doi:10.1002/mop.34068 Google Scholar
15. Zhu, Ruichao, Tianshuo Qiu, Jiafu Wang, Sai Sui, Chenglong Hao, Tonghao Liu, Yongfeng Li, Mingde Feng, Anxue Zhang, Cheng-Wei Qiu, and Shaobo Qu, "Phase-to-pattern inverse design paradigm for fast realization of functional metasurfaces via transfer learning," Nature Communications, Vol. 12, No. 1, 2974, 2021.
doi:10.1038/s41467-021-23087-y Google Scholar
16. Naseri, Parinaz and Sean V. Hum, "A generative machine learning-based approach for inverse design of multilayer metasurfaces," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 9, 5725-5739, 2021.
doi:10.1109/tap.2021.3060142 Google Scholar
17. Wei, Zhaohui, Zhao Zhou, Peng Wang, Jian Ren, Yingzeng Yin, Gert Frølund Pedersen, and Ming Shen, "Equivalent circuit theory-assisted deep learning for accelerated generative design of metasurfaces," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 7, 5120-5129, 2022.
doi:10.1109/tap.2022.3152592 Google Scholar
18. Lyu, Yanhe, Theng Huat Gan, and Zhi Ning Chen, "TE-TM balanced wide-angle metacells for low scan-loss metalens antenna using prior knowledge-guided generative deep learning-enabled method," IEEE Transactions on Antennas and Propagation, Vol. 73, No. 5, 2940-2949, 2025.
doi:10.1109/tap.2025.3552837 Google Scholar