Vol. 127
Latest Volume
All Volumes
PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2025-10-24
Circularly Polarized Holographic Metasurface Antenna with Metal Vias and Its Gain Enhancement Analysis
By
Progress In Electromagnetics Research Letters, Vol. 127, 69-75, 2025
Abstract
This paper presents a design method for circularly polarized metasurface antennas by integrating waveguide-fed metasurfaces with optical holography principles. Two interleaved linear slot elements on the metasurface top layer are excited by a reference wave from the feed, generating a circularly polarized beam. Simply adjusting the position of each slot element steers the beam in the desired direction. To enhance gain, metal vias are added around the antenna perimeter, reducing reference wave leakage. To validate this method, two 24 GHz circularly polarized holographic metasurfaces were simulated and experimentally characterized. Measurements show a 1.23 dB gain enhancement in the metasurface antenna with metal vias. Simulated and measured results validate the antenna's performance. This approach yields compact, low-profile antennas without requiring a separate feed network. Furthermore, the structure can be extended to create reconfigurable circularly polarized antennas, demonstrating significant potential in this field.
Citation
Chunyu Liu, Chen Zhang, Xuwen Guo, and Huayong Zou, "Circularly Polarized Holographic Metasurface Antenna with Metal Vias and Its Gain Enhancement Analysis," Progress In Electromagnetics Research Letters, Vol. 127, 69-75, 2025.
doi:10.2528/PIERL25090505
References

1. Nikoufard, Mahmoud, Abbas Nourmohammadi, and Saeid Esmaeili, "Hybrid plasmonic nanoantenna with the capability of monolithic integration with laser and photodetector on InP substrate," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 1, 3-8, 2018.
doi:10.1109/tap.2017.2767623

2. Sievenpiper, D., J. Colburn, B. Fong, J. Ottusch, and J. Visher, "Holographic artificial impedance surfaces for conformal antennas," 2005 IEEE Antennas and Propagation Society International Symposium, Vol. 1B, 256-259, Washington, DC, USA, 2005.
doi:10.1109/APS.2005.1551536

3. Huang, Hui-Fen and Ying-Jing Ma, "Generation of dual-band dual-polarized orbital angular momentum beams with holographic impedance metasurface," 2023 IEEE MTT-S International Wireless Symposium (IWS), 1-3, Qingdao, China, 2023.
doi:10.1109/IWS58240.2023.10222909

4. Zhao, Shihao, Song Zhang, Hao Xue, Yicen Li, Kunyi Zhang, Haixia Liu, and Long Li, "Generation of bessel beam with controllable circular polarization and direction using Holographic Tensor Metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 23, No. 3, 985-989, 2024.
doi:10.1109/lawp.2023.3340873

5. Huang, Huifen and YingJing Ma, "Tensor holographic impedance coding metasurface for millimeter-wave circular airy OAM multibeams generation," 2024 IEEE International Workshop on Radio Frequency and Antenna Technologies (iWRF&AT), 389-394, Shenzhen, China, 2024.
doi:10.1109/iWRFAT61200.2024.10594420

6. Wang, Jun, Jing Lou, Jia Fu Wang, Shao Bo Qu, Hong Liang Du, and Tie Jun Cui, "Ferroelectric composite artificially-structured functional material: multifield control for tunable functional devices," Journal of Physics D: Applied Physics, Vol. 55, No. 30, 303002, 2022.
doi:10.1088/1361-6463/ac5e8b

7. Liu, Che, Qian Ma, Zhang Jie Luo, Qiao Ru Hong, Qiang Xiao, Hao Chi Zhang, Long Miao, Wen Ming Yu, Qiang Cheng, Lianlin Li, and Tie Jun Cui, "A programmable diffractive deep neural network based on a digital-coding metasurface array," Nature Electronics, Vol. 5, No. 2, 113-122, 2022.
doi:10.1038/s41928-022-00719-9

8. Yan, Tao, Qian Ma, and Tiejun Cui, "Circular polarization hologram realized by pancharatnam-berry phase in microwave frequency," Journal of Computer and Communications, Vol. 8, No. 12, 134-141, 2020.
doi:10.4236/jcc.2020.812013

9. Liang, Hui, Zhaoneng Jiang, Shuai Meng, Chang Peng, and Weixing Gao, "A conformal CP antenna based on isotropic holographic metasurface," 2024 Photonics & Electromagnetics Research Symposium (PIERS), 1-5, Chengdu, China, 2024.
doi:10.1109/PIERS62282.2024.10618155

10. Purohit, Gautham, Swarnadipto Ghosh, and Chinmoy Saha, "Circular and linearly polarized high gain scalar holographic metasurface antenna for mm-wave application," 2024 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), 1-5, Bangalore, India, 2024.
doi:10.1109/CONECCT62155.2024.10677316

11. Shi, Ting, Ruolei Chai, Xiaoming Chen, Mei Li, Tao Zhang, and Ming-Chun Tang, "A low-profile, circularly polarized, metasurface-based antenna with enhanced bandwidth and stable high gain," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 2, 253-257, 2023.
doi:10.1109/lawp.2022.3208267

12. Liu, Jie, Jian-Ying Li, and Zhi Ning Chen, "Broadband polarization conversion metasurface for antenna RCS reduction," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 5, 3834-3839, 2022.
doi:10.1109/tap.2021.3137412

13. Pang, Hui, Jianping Zhao, and Juan Xu, "Miniaturized circularly polarized metasurface antenna based on characteristic mode analysis," Microwave and Optical Technology Letters, Vol. 66, No. 1, e33983, 2024.
doi:10.1002/mop.33983

14. Yurduseven, Okan, Daniel L. Marks, Jonah N. Gollub, and David R. Smith, "Design and analysis of a reconfigurable holographic metasurface aperture for dynamic focusing in the Fresnel zone," IEEE Access, Vol. 5, 15055-15065, 2017.
doi:10.1109/access.2017.2712659

15. Yurduseven, Okan and David R. Smith, "Dual-polarization printed holographic multibeam metasurface antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2738-2741, 2017.
doi:10.1109/lawp.2017.2743710

16. Zhang, Chen, Li Deng, Jianfeng Zhu, Weijun Hong, Ling Wang, Hongjun Wang, Ting Zeng, Xiaokui Ren, Xiaoyuan He, Zhentao Zhao, Shufang Li, and Xue Chen, "A right-handed circularly polarized wave generated by a waveguide-fed holographic metasurface," Journal of Physics D: Applied Physics, Vol. 53, No. 26, 26LT01, 2020.
doi:10.1088/1361-6463/ab850f

17. Zhang, Chen, Li Deng, Ling Wang, Xue Chen, and Shufang Li, "Generation of circularly polarized quasi-non-diffractive vortex wave via a microwave holographic metasurface integrated with a monopole," Applied Sciences, Vol. 11, No. 15, 7128, 2021.
doi:10.3390/app11157128

18. Sleasman, Timothy A., Mohammadreza F. Imani, Aaron V. Diebold, Michael Boyarsky, Kenneth P. Trofatter, and David R. Smith, "Implementation and characterization of a two-dimensional printed circuit dynamic metasurface aperture for computational microwave imaging," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 4, 2151-2164, 2021.
doi:10.1109/tap.2020.3027188

19. Hoang, The Viet, Vincent Fusco, Thomas Fromenteze, and Okan Yurduseven, "Computational polarimetric imaging using two-dimensional dynamic metasurface apertures," IEEE Open Journal of Antennas and Propagation, Vol. 2, 488-497, 2021.
doi:10.1109/ojap.2021.3069320

20. Nath, Uddipan, Sagnik Banerjee, Carlo Santini, Rocco Citroni, Fabio Mangini, and Fabrizio Frezza, "Simple and cost-effective design of a THz-metamaterial-based hybrid sensor on a single substrate," Sensors, Vol. 25, No. 12, 3660, 2025.
doi:10.3390/s25123660

21. Althuwayb, Ayman A., Mohammad Alibakhshikenari, Bal S. Virdee, Harry Benetatos, Francisco Falcone, and Ernesto Limiti, "Antenna on chip (AoC) design using metasurface and SIW technologies for THz wireless applications," Electronics, Vol. 10, No. 9, 1120, 2021.
doi:10.3390/electronics10091120

22. Alibakhshikenari, Mohammad, Bal S. Virdee, Renu Karthick Rajaguru, Amjad Iqbal, Muath Al-Hasan, Chan H. See, and Francisco Falcone, "High performance antenna-on-chip inspired by SIW and metasurface technologies for THz band operation," Scientific Reports, Vol. 13, No. 1, 56, 2023.
doi:10.1038/s41598-022-27364-8

23. Li, Teng and Zhi Ning Chen, "Control of beam direction for substrate-integrated waveguide slot array antenna using metasurface," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 6, 2862-2869, 2018.
doi:10.1109/tap.2018.2823755