1. Papasimakis, Nikitas and Nikolay I. Zheludev, "Metamaterial-induced transparency: Sharp Fano resonances and slow light," Optics and Photonics News, Vol. 20, No. 10, 22-27, 2009.
doi:10.1364/opn.20.10.000022
2. Lukin, M. D. and A. Imamoğlu, "Controlling photons using electromagnetically induced transparency," Nature, Vol. 413, No. 6853, 273-276, 2001.
doi:10.1038/35095000
3. Hamedi, Hamid Reza, Julius Ruseckas, and Gediminas Juzeliūnas, "Exchange of optical vortices using an electromagnetically-induced-transparency-based four-wave-mixing setup," Physical Review A, Vol. 98, No. 1, 013840, Jul. 2018.
doi:10.1103/physreva.98.013840
4. Amin, Muhammad, Rashad Ramzan, and Omar Siddiqui, "Slow wave applications of electromagnetically induced transparency in microstrip resonator," Scientific Reports, Vol. 8, No. 1, 2357, 2018.
doi:10.1038/s41598-018-20771-w
5. Alzar, C. L., M. A. G. Martinez, and P. Nussenzveig, "Classical analog of electromagnetically induced transparency," American Journal of Physics, Vol. 70, No. 1, 37-41, 2002.
doi:10.1119/1.1412644
6. Sundaravadivel, Palaniselvan, Sathiyapriya Thangavel, Gold Beulah Patturose Jegajothi, Rethinasamy Meenakshi, Dhanushkodi Siva Sundhara Raja, and D. Rajesh Kumar, "A high-performance, thin, circularly polarized microstrip antenna for compact radar systems," Progress In Electromagnetics Research Letters, Vol. 124, 31-36, 2025.
doi:10.2528/pierl24111202
7. Liu, Siyuan, Zhixia Xu, Xiaoxing Yin, and Hongxin Zhao, "Analog of multiple electromagnetically induced transparency using double-layered metasurfaces," Scientific Reports, Vol. 10, No. 1, 8469, 2020.
doi:10.1038/s41598-020-65418-x
8. Chiam, Sher-Yi, Ranjan Singh, Carsten Rockstuhl, Falk Lederer, Weili Zhang, and Andrew A. Bettiol, "Analogue of electromagnetically induced transparency in a terahertz metamaterial," Physical Review B, Vol. 80, No. 15, 153103, 2009.
doi:10.1103/physrevb.80.153103
9. López-Tejeira, Fernando, Ramón Paniagua-Domínguez, and José A. Sánchez-Gil, "High-performance nanosensors based on plasmonic Fano-like interference: Probing refractive index with individual nanorice and nanobelts," ACS Nano, Vol. 6, No. 10, 8989-8996, 2012.
doi:10.1021/nn303059s
10. Wu, Chihhui, Alexander B. Khanikaev, Ronen Adato, Nihal Arju, Ahmet Ali Yanik, Hatice Altug, and Gennady Shvets, "Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers," Nature Materials, Vol. 11, No. 1, 69-75, 2012.
doi:10.1038/nmat3161
11. Touiss, Tarik, Ilyass El Kadmiri, Younes Errouas, and Driss Bria, "Electromagnetically induced transparency and fano resonances in waveguides and U-shaped or cross-shaped resonators," Progress In Electromagnetics Research M, Vol. 127, 53-63, 2024.
doi:10.2528/pierm24020301
12. Khattab, Moulay Said, Tarik Touiss, Ilyass El Kadmiri, Fatima Zahra Elamri, and Driss Bria, "Multi-channel electromagnetic filters based on EIT and Fano resonances through parallel segments and asymmetric resonators," Progress In Electromagnetics Research Letters, Vol. 115, 105-109, 2024.
doi:10.2528/pierl23101004
13. Wang, Fang, Junjie Cui, Hua Liu, Tao Ma, Xu Wang, and Yufang Liu, "Terahertz metamaterial devices with switchable absorption and polarization conversion based on vanadium dioxide," Progress In Electromagnetics Research C, Vol. 153, 61-70, 2025.
doi:10.2528/pierc25011003
14. Ennasar, Mohammed A., Mohamed El Khamlichi, Youness Akazzim, Abdelmounaim Tachrifat, Mariem Aznabet, Otman El Mrabet, and Mohsine Khalladi, "Design and integration of a flexible RFID UHF antenna with a 3D printed fluid channel for liquids sensing applications," Progress In Electromagnetics Research C, Vol. 157, 65-73, 2025.
doi:10.2528/pierc25012106
15. Liu, Siyuan and Feng Xue, "Miniaturized and wide-range microwave-permittivity sensor based on electromagnetic-induced transparency," Photonics, Vol. 12, No. 3, 283, 2025.
doi:10.3390/photonics12030283
16. Liu, Shaobin, Renxia Ning, Jiale Zhu, and Yanfei Zhang, "Multiband electromagnetically induced transparency-like on metamaterials," Optics Communications, Vol. 574, 131065, 2025.
doi:10.1016/j.optcom.2024.131065
17. Ye, Hai-Ning, Bao-Fei Wan, and Hai-Feng Zhang, "The realization of broadband electromagnetically induced transparency metastructure based on the resonance between dielectric ceramic and metal," Ceramics International, Vol. 50, No. 17B, 31235-31248, 2024.
18. Siddiqui, Omar F., "The forward transmission matrix (FTM) method for S-parameter analysis of microwave circuits and their metamaterial counterparts," Progress In Electromagnetics Research B, Vol. 66, 123-141, 2016.
doi:10.2528/pierb16012101