Vol. 128
Latest Volume
All Volumes
PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2025-12-12
A Touch Sensing Method Using EIT-Based Microstrip Structure for Interactive Applications
By
Progress In Electromagnetics Research Letters, Vol. 128, 41-47, 2025
Abstract
Touch interaction is an important function in various electronic systems. In this paper, a touch sensing method based on an electromagnetically induced transparency (EIT) microstrip structure is proposed. The design consists of a U-shaped two-port microstrip transmission line with four open stubs oriented in four directions. Two transmission narrow bands are generated by the proposed structure at around 1.8 GHz and 3.5 GHz, corresponding to the EIT effect. When finger-like objects approach the terminals of these open stubs, their transmission characteristics change significantly, as indicated by variations in the S-parameter response. To precisely determine the touch position, a shifting vector method is introduced based on the variations of S-parameters at different touch positions on the board plane. Both simulation and experimental results demonstrate a touch localization accuracy of 94.4% with a spatial resolution of 3 mm. The proposed design offers a low-cost and compact platform that integrates touch interaction and RF communication, showing strong potential for future interactive electronic and communication systems.
Citation
Jiyou Jiang, and Jiangtao Huangfu, "A Touch Sensing Method Using EIT-Based Microstrip Structure for Interactive Applications," Progress In Electromagnetics Research Letters, Vol. 128, 41-47, 2025.
doi:10.2528/PIERL25092302
References

1. Papasimakis, Nikitas and Nikolay I. Zheludev, "Metamaterial-induced transparency: Sharp Fano resonances and slow light," Optics and Photonics News, Vol. 20, No. 10, 22-27, 2009.
doi:10.1364/opn.20.10.000022

2. Lukin, M. D. and A. Imamoğlu, "Controlling photons using electromagnetically induced transparency," Nature, Vol. 413, No. 6853, 273-276, 2001.
doi:10.1038/35095000

3. Hamedi, Hamid Reza, Julius Ruseckas, and Gediminas Juzeliūnas, "Exchange of optical vortices using an electromagnetically-induced-transparency-based four-wave-mixing setup," Physical Review A, Vol. 98, No. 1, 013840, Jul. 2018.
doi:10.1103/physreva.98.013840

4. Amin, Muhammad, Rashad Ramzan, and Omar Siddiqui, "Slow wave applications of electromagnetically induced transparency in microstrip resonator," Scientific Reports, Vol. 8, No. 1, 2357, 2018.
doi:10.1038/s41598-018-20771-w

5. Alzar, C. L., M. A. G. Martinez, and P. Nussenzveig, "Classical analog of electromagnetically induced transparency," American Journal of Physics, Vol. 70, No. 1, 37-41, 2002.
doi:10.1119/1.1412644

6. Sundaravadivel, Palaniselvan, Sathiyapriya Thangavel, Gold Beulah Patturose Jegajothi, Rethinasamy Meenakshi, Dhanushkodi Siva Sundhara Raja, and D. Rajesh Kumar, "A high-performance, thin, circularly polarized microstrip antenna for compact radar systems," Progress In Electromagnetics Research Letters, Vol. 124, 31-36, 2025.
doi:10.2528/pierl24111202

7. Liu, Siyuan, Zhixia Xu, Xiaoxing Yin, and Hongxin Zhao, "Analog of multiple electromagnetically induced transparency using double-layered metasurfaces," Scientific Reports, Vol. 10, No. 1, 8469, 2020.
doi:10.1038/s41598-020-65418-x

8. Chiam, Sher-Yi, Ranjan Singh, Carsten Rockstuhl, Falk Lederer, Weili Zhang, and Andrew A. Bettiol, "Analogue of electromagnetically induced transparency in a terahertz metamaterial," Physical Review B, Vol. 80, No. 15, 153103, 2009.
doi:10.1103/physrevb.80.153103

9. López-Tejeira, Fernando, Ramón Paniagua-Domínguez, and José A. Sánchez-Gil, "High-performance nanosensors based on plasmonic Fano-like interference: Probing refractive index with individual nanorice and nanobelts," ACS Nano, Vol. 6, No. 10, 8989-8996, 2012.
doi:10.1021/nn303059s

10. Wu, Chihhui, Alexander B. Khanikaev, Ronen Adato, Nihal Arju, Ahmet Ali Yanik, Hatice Altug, and Gennady Shvets, "Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers," Nature Materials, Vol. 11, No. 1, 69-75, 2012.
doi:10.1038/nmat3161

11. Touiss, Tarik, Ilyass El Kadmiri, Younes Errouas, and Driss Bria, "Electromagnetically induced transparency and fano resonances in waveguides and U-shaped or cross-shaped resonators," Progress In Electromagnetics Research M, Vol. 127, 53-63, 2024.
doi:10.2528/pierm24020301

12. Khattab, Moulay Said, Tarik Touiss, Ilyass El Kadmiri, Fatima Zahra Elamri, and Driss Bria, "Multi-channel electromagnetic filters based on EIT and Fano resonances through parallel segments and asymmetric resonators," Progress In Electromagnetics Research Letters, Vol. 115, 105-109, 2024.
doi:10.2528/pierl23101004

13. Wang, Fang, Junjie Cui, Hua Liu, Tao Ma, Xu Wang, and Yufang Liu, "Terahertz metamaterial devices with switchable absorption and polarization conversion based on vanadium dioxide," Progress In Electromagnetics Research C, Vol. 153, 61-70, 2025.
doi:10.2528/pierc25011003

14. Ennasar, Mohammed A., Mohamed El Khamlichi, Youness Akazzim, Abdelmounaim Tachrifat, Mariem Aznabet, Otman El Mrabet, and Mohsine Khalladi, "Design and integration of a flexible RFID UHF antenna with a 3D printed fluid channel for liquids sensing applications," Progress In Electromagnetics Research C, Vol. 157, 65-73, 2025.
doi:10.2528/pierc25012106

15. Liu, Siyuan and Feng Xue, "Miniaturized and wide-range microwave-permittivity sensor based on electromagnetic-induced transparency," Photonics, Vol. 12, No. 3, 283, 2025.
doi:10.3390/photonics12030283

16. Liu, Shaobin, Renxia Ning, Jiale Zhu, and Yanfei Zhang, "Multiband electromagnetically induced transparency-like on metamaterials," Optics Communications, Vol. 574, 131065, 2025.
doi:10.1016/j.optcom.2024.131065

17. Ye, Hai-Ning, Bao-Fei Wan, and Hai-Feng Zhang, "The realization of broadband electromagnetically induced transparency metastructure based on the resonance between dielectric ceramic and metal," Ceramics International, Vol. 50, No. 17B, 31235-31248, 2024.

18. Siddiqui, Omar F., "The forward transmission matrix (FTM) method for S-parameter analysis of microwave circuits and their metamaterial counterparts," Progress In Electromagnetics Research B, Vol. 66, 123-141, 2016.
doi:10.2528/pierb16012101