Vol. 117
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2026-01-12
Bandwidth Reconfigurable Circularly Polarized Antenna with Beam Steering Ability Using Phase Gradient Metasurface
By
Progress In Electromagnetics Research B, Vol. 117, 1-15, 2026
Abstract
A bandwidth tunable, circularly polarized (CP) patch antenna, with complementary split ring resonator (CSRR), embedded on the ground plane is presented in this paper. The antenna is capable of switching between ultra-wide band (UWB) frequency response, spanning through 2.6 GHz to 12 GHz and a narrowband (NB) frequency response at 6 GHz. Excitation of CSRR results in negative permittivity medium, producing notch band response at its designed frequency. This notch band is shifted by varying the arm length of CSRR using PIN diodes. This will result in tuning the bandwidth (BW) of the NB response of antenna, spanning from 1 GHz to 4.4 GHz, by retaining the central frequency at 6 GHz. The fractional bandwidth can be varied in a range of 16% to 73.3%, exhibiting an increase by a factor of 4.58. The antenna also exhibits switchable circular polarization (LHCP/RHCP) at 6 GHz for both UWB as well as narrowband responses. A compact tunable multiband Artificial Magnetic Conductor (AMC) unit cell is also designed and is used to construct a Phase Gradient Metasurface (PGM). The radiating beam of the antenna is steered using the PGM as a reflector to obtain a beam steering angle of +36° for LHCP and -44° for RHCP radiations. The antenna is a promising solution for applications which demand bandwidth switching & beam steering, such as cognitive radio services.
Citation
Naveen Jacob, Muralidhar Kulkarni, and Krishnamoorthy Kandasamy, "Bandwidth Reconfigurable Circularly Polarized Antenna with Beam Steering Ability Using Phase Gradient Metasurface," Progress In Electromagnetics Research B, Vol. 117, 1-15, 2026.
doi:10.2528/PIERB25100104
References

1. Mansoul, Ali, Farid Ghanem, Mohamad R. Hamid, Erkki Salonen, and Markus Berg, "Bandwidth reconfigurable antenna with a fixed lower and a variable upper limit," IET Microwaves, Antennas & Propagation, Vol. 10, No. 15, 1725-1733, 2016.
doi:10.1049/iet-map.2016.0286        Google Scholar

2. Seddiki, Mohamed L., Mourad Nedil, Saifeddine Hadji, and Farid Ghanem, "An independently reconfigurable upper and lower band edge of Yagi Uda antenna," Progress In Electromagnetics Research Letters, Vol. 96, 1-6, 2021.
doi:10.2528/pierl20102801        Google Scholar

3. Yu, Jun, Wen Jiang, and Shuxi Gong, "Low-RCS beam-steering antenna based on reconfigurable phase gradient metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 10, 2016-2020, 2019.
doi:10.1109/lawp.2019.2936300        Google Scholar

4. Han, Liping, Gen Cheng, Guorui Han, Runbo Ma, and Wenmei Zhang, "Electronically beam-steering antenna with active frequency-selective surface," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 1, 108-112, Jan. 2019.
doi:10.1109/lawp.2018.2882525        Google Scholar

5. Rasool, Maryam, Aabia Khan, Farooq Bhatti, Bilal Ijaz, and Adnan Iftikhar, "A compact circular loop inspired frequency and bandwidth reconfigurable antenna for 4G, 5G, and X-band applications," Radioengineering, Vol. 29, No. 3, 471-478, 2020.
doi:10.13164/re.2020.0471        Google Scholar

6. Qin, Pei-Yuan, Feng Wei, and Y. Jay Guo, "A wideband-to-narrowband tunable antenna using a reconfigurable filter," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 5, 2282-2285, May 2015.
doi:10.1109/tap.2015.2402295        Google Scholar

7. Le, Tu Tuan and Tae-Yeoul Yun, "A quad-band dual-sense circularly-polarized square-ring antenna for multi-functional wireless applications," IEEE Access, Vol. 7, 149634-149640, 2019.
doi:10.1109/access.2019.2947094        Google Scholar

8. Qin, Pei-Yuan, Andrew R. Weily, Y. Jay Guo, and Chang-Hong Liang, "Polarization reconfigurable U-slot patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 10, 3383-3388, Oct. 2010.
doi:10.1109/tap.2010.2055808        Google Scholar

9. Kandasamy, Krishnamoorthy, Basudev Majumder, Jayanta Mukherjee, and Kamla Prasan Ray, "Dual-band circularly polarized split ring resonators loaded square slot antenna," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 8, 3640-3645, Aug. 2016.
doi:10.1109/tap.2016.2565729        Google Scholar

10. Kandasamy, K., B. Majumder, J. Mukherjee, and K. P. Ray, "Beam-tilted and wide beam antennas using hybrid electromagnetic band gap structures," 2015 European Microwave Conference (EuMC), 458-461, Paris, France, 2015.
doi:10.1109/EuMC.2015.7345799

11. Cao, Yun Fei and Xiu Yin Zhang, "A wideband beam-steerable slot antenna using artificial magnetic conductors with simple structure," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 4, 1685-1694, Apr. 2018.
doi:10.1109/tap.2018.2804480        Google Scholar

12. Ji, Lu-Yang, Zhi-Ya Zhang, and Neng-Wu Liu, "A two-dimensional beam-steering partially reflective surface (PRS) antenna using a reconfigurable FSS structure," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 6, 1076-1080, Jun. 2019.
doi:10.1109/lawp.2019.2907641        Google Scholar

13. Alqurashi, Khaled Yahya, James R. Kelly, Zhengpeng Wang, Carol Crean, Raj Mittra, Mohsen Khalily, and Yue Gao, "Liquid metal bandwidth-reconfigurable antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 218-222, Jan. 2020.
doi:10.1109/lawp.2019.2959879        Google Scholar

14. Naqvi, Aqeel Hussain and Sungjoon Lim, "A beam-steering antenna with a fluidically programmable metasurface," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 3704-3711, Jun. 2019.
doi:10.1109/tap.2019.2905690        Google Scholar

15. Tharehalli Rajanna, Puneeth Kumar, Karthik Rudramuni, and Krishnamoorthy Kandasamy, "Compact triband circularly polarized planar slot antenna loaded with split ring resonators," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 12, e21953, 2019.
doi:10.1002/mmce.21953        Google Scholar

16. Jacob, Naveen, Muralidhar Kulkarni, et al. "Omega shaped complementary split ring resonator loaded bandwidth reconfigurable antenna for cognitive radio applications," Procedia Computer Science, Vol. 171, 1279-1285, 2020.
doi:10.1016/j.procs.2020.04.136        Google Scholar

17. Saha, Chinmoy and Jawad Y. Siddiqui, "Theoretical model for estimation of resonance frequency of rotational circular split-ring resonators," Electromagnetics, Vol. 32, No. 6, 345-355, Aug. 2012.
doi:10.1080/02726343.2012.701540        Google Scholar

18. Baena, J. D., J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1451-1461, Apr. 2005.
doi:10.1109/tmtt.2005.845211        Google Scholar

19. Afridi, Adeel, Sadiq Ullah, Imad Ali, Shahbaz Khan, and James A. Flint, "Design and parametric analysis of a dual-band frequency reconfigurable planar dipole using a dual-band artificial ground plane," IETE Journal of Research, Vol. 60, No. 1, 3-11, 2014.
doi:10.1080/03772063.2014.890803        Google Scholar

20. Tian, Xiuwen and Lizhong Song, "A 2 bit reconfigurable beam-steering antenna array using phase compensation," Progress In Electromagnetics Research C, Vol. 126, 63-75, 2022.
doi:10.2528/pierc22081504        Google Scholar

21. Guo, Jiaying, Yiwei Ping, Yajuan Zhao, Yufeng Liu, and Liping Han, "Design of a full polarization reconfigurable MIMO antenna," Progress In Electromagnetics Research Letters, Vol. 110, 73-81, 2023.
doi:10.2528/pierl23032007        Google Scholar

22. Vinod, Gandham V. and Vikas V. Khairnar, "A wideband beam steering and beamwidth reconfigurable antenna using coding metasurface," IEEE Access, Vol. 12, 97143-97153, Jul. 2024.
doi:10.1109/access.2024.3427707        Google Scholar

23. Paul, Princy M., Krishnamoorthy Kandasamy, and Mohammad S. Sharawi, "A corner expanded slot antenna loaded with copper strips for dual-band circular polarization characteristics," Microwave and Optical Technology Letters, Vol. 62, No. 1, 491-497, Jan. 2020.
doi:10.1002/mop.32044        Google Scholar

24. Yang, Zi-Xian, Hong-Chun Yang, Jing-Song Hong, and Yang Li, "Bandwidth enhancement of a polarization-reconfigurable patch antenna with stair-slots on the ground," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 579-582, Mar. 2014.
doi:10.1109/lawp.2014.2312971        Google Scholar

25. Das, Priyanka, Kaushik Mandal, and Ali Lalbakhsh, "Beam‐steering of microstrip antenna using single‐layer FSS based phase‐shifting surface," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 32, No. 3, e23033, Dec. 2021.
doi:10.1002/mmce.23033        Google Scholar

26. Kaur, Kavneet, Ashwani Kumar, and Narinder Sharma, "Split ring slot loaded compact CPW-fed printed monopole antennas for ultra-wideband applications with band notch characteristics," Progress In Electromagnetics Research C, Vol. 110, 39-54, 2021.
doi:10.2528/pierc20122401        Google Scholar

27. Abraray, A., R. A. M. Pereira, K. Kaboutari, and S. Maslovski, "Realization of programmable chessboard mushroom-type metasurface for beamforming applications," 2023 Photonics & Electromagnetics Research Symposium (PIERS), 1909-1913, Prague, Czech Republic, 03-06 July 2023.
doi:10.1109/PIERS59004.2023.10221492

28. Yassen, Mahmood T., Ali J. Salim, Mohammed R. Hussan, and Jawad K. Ali, "A compact dual-band dual-polarized antenna based on modified minkowski fractal," Progress In Electromagnetics Research C, Vol. 140, 11-19, 2024.
doi:10.2528/pierc23110306        Google Scholar

29. Shen, Zhicheng, Sajjad Taravati, and Jize Yan, "Digital-coding metamaterials for on-chip beamsteering and reconfigurable millimeter-wave interconnects," IEEE Access, Vol. 12, 190775-190790, Nov. 2024.
doi:10.1109/access.2024.3508574        Google Scholar

30. Deshmukh, Amit A., Heet Mistry, Venkata A. P. Chavali, Aniruddh Viswanathan, and Prasanna Nadkarni, "Reconfigurable designs of sectoral microstrip antennas for single band and tunable circular polarized response," Progress In Electromagnetics Research B, Vol. 110, 73-90, 2025.
doi:10.2528/pierb24122404        Google Scholar