Vol. 129
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2026-01-25
Characterization of Complex Permittivity Using Microwave Diffraction of Spheres
By
Progress In Electromagnetics Research Letters, Vol. 129, 9-14, 2026
Abstract
The determination of the complex permittivity of materials is a fundamental aspect of experimental electromagnetics. This study introduces a method that estimates the complex permittivity by comparing the measured bistatic field diffracted by spherical samples in an anechoic chamber with fields computed using Mie theory. The approach is applied to a molded PMMA sphere and two 3D-printed materials (Clear Resin V4.1 and Rigid 10K) over the 2-18 GHz band. The retrieved permittivity values show excellent agreement with reference data for PMMA and enable reliable characterization of low-loss 3D-printed materials, with uncertainties quantified from both experimental and numerical contributions. These results confirm the effectiveness of microwave-diffraction-based characterization and highlight promising perspectives for future investigations on an even larger frequency band.
Citation
Elio Samara, Jean-Michel Geffrin, and Amelie Litman, "Characterization of Complex Permittivity Using Microwave Diffraction of Spheres," Progress In Electromagnetics Research Letters, Vol. 129, 9-14, 2026.
doi:10.2528/PIERL25110306
References

1. Ba, Doudou and Pierre Sabouroux, "EpsiMu, a toolkit for permittivity and permeability measurement in microwave domain at real time of all materials: Applications to solid and semisolid materials," Microwave and Optical Technology Letters, Vol. 52, No. 12, 2643-2648, 2010.
doi:10.1002/mop.25570        Google Scholar

2. Akhtar, M. J., L. E. Feher, and M. Thumm, "A waveguide-based two-step approach for measuring complex permittivity tensor of uniaxial composite materials," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 5, 2011-2022, 2006.
doi:10.1109/tmtt.2006.873623        Google Scholar

3. Parkash, A., J. K. Vaid, and A. Mansingh, "Measurement of dielectric parameters at microwave frequencies by cavity-perturbation technique," IEEE Transactions on Microwave Theory and Techniques, Vol. 27, No. 9, 791-795, 1979.
doi:10.1109/tmtt.1979.1129731        Google Scholar

4. Peng, Zhiwei, Jiann-Yang Hwang, and Matthew Andriese, "Maximum sample volume for permittivity measurements by cavity perturbation technique," IEEE Transactions on Instrumentation and Measurement, Vol. 63, No. 2, 450-455, 2014.
doi:10.1109/tim.2013.2279496        Google Scholar

5. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Transactions on Instrumentation and Measurement, Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/tim.1970.4313932        Google Scholar

6. Gorriti, A. G. and E. C. Slob, "A new tool for accurate S-parameters measurements and permittivity reconstruction," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 8, 1727-1735, 2005.
doi:10.1109/tgrs.2005.851163        Google Scholar

7. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proceedings of the IEEE, Vol. 62, No. 1, 33-36, 1974.
doi:10.1109/proc.1974.9382        Google Scholar

8. Lippoldt, Max and Jan Hesselbarth, "Characterization of sub-resonant dielectric spheres by millimeter-wave scattering measurements," Sensors, Vol. 25, No. 18, 5687, 2025.
doi:10.3390/s25185687        Google Scholar

9. Yu, J. S. and L. J. Peters, "Measurement of constitutive parameters using the Mie solution of a scattering sphere," Proceedings of the IEEE, Vol. 58, No. 6, 876-885, 1970.
doi:10.1109/proc.1970.7795        Google Scholar

10. Abbato, R., "Dielectric constant measurements using RCS data," Proceedings of the IEEE, Vol. 53, No. 8, 1095-1097, 1965.
doi:10.1109/proc.1965.4101        Google Scholar

11. Eyraud, C., J.-M. Geffrin, A. Litman, and H. Tortel, "Complex permittivity determination from far-field scattering patterns," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 309-312, 2015.
doi:10.1109/lawp.2014.2362995        Google Scholar

12. Bohren, Craig F. and Donald R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, 1983.
doi:10.1002/9783527618156

13. Eyraud, C., J.-M. Geffrin, A. Litman, P. Sabouroux, and H. Giovannini, "Drift correction for scattering measurements," Applied Physics Letters, Vol. 89, No. 24, 244104, 2006.
doi:10.1063/1.2404978        Google Scholar

14. Taylor, John R., An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, University Science Books, 1997.
doi:10.1063/1.882103

15. Baker-Jarvis, J., M. D. Janezic, B. Riddle, Christopher L. Holloway, N. G. Paulter, and J. E. Blendell, "Dielectric and conductor-loss characterization and measurements on electronic packaging materials," Technical Note 1520, National Institute of Standards and Technology (NIST), 2001.
doi:10.6028/nist.tn.1520

16. Riddle, B., J. Baker-Jarvis, and J. Krupka, "Complex permittivity measurements of common plastics over variable temperatures," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 3, 727-733, 2003.
doi:10.1109/TMTT.2003.808730        Google Scholar