Vol. 128
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2025-12-18
Design of a Compact High-Temperature Superconducting Bandpass Filter with Mixed Electromagnetic Coupling
By
Progress In Electromagnetics Research Letters, Vol. 128, 67-73, 2025
Abstract
This paper systematically analyzes the electromagnetic coupling characteristics between microstrip resonators and proposes a novel structure that enables mutual cancellation of electromagnetic coupling, effectively reducing the spacing between resonators. Based on this approach, a 14th-order compact high-temperature superconducting (HTS) microstrip bandpass filter is designed and implemented. By constructing a folded symmetric resonator structure to minimize the total electromagnetic coupling energy, and by optimizing the non-uniform coupling gaps in conjunction with the coupling characteristics, precise control of the coupling paths is achieved, leading to a significantly enhanced compactness. The filter is fabricated using double-sided YBCO HTS thin films and tested at liquid nitrogen temperature (77 K). Both simulation and measurement results show that the filter operates within the 0.96~1.06 GHz frequency band, exhibits an insertion loss below 0.4 dB, an out-of-band rejection better than 78 dB, and a passband edge roll-off rate exceeding 60 dB/MHz, demonstrating excellent performance in terms of low loss, wide bandwidth, and high suppression.
Citation
Chenhao Xu, Chenchen Wang, Yiqiuzi Shen, and Liguo Zhou, "Design of a Compact High-Temperature Superconducting Bandpass Filter with Mixed Electromagnetic Coupling," Progress In Electromagnetics Research Letters, Vol. 128, 67-73, 2025.
doi:10.2528/PIERL25110502
References

1. Li, Daotong, Ju-An Wang, Zhen Chen, Yaohui Zhang, Ming-Chun Tang, and Lisheng Yang, "Compact microstrip bandpass filter with sharp roll-off and broad stopband using modified 0° feed structure," AEU --- International Journal of Electronics and Communications, Vol. 109, 17-22, 2019.
doi:10.1016/j.aeue.2019.06.030

2. Kadhom, Moretadha J., "High selectivity tri-coupled line bandpass filter based on even- and odd-mode impedance modeling," Progress In Electromagnetics Research C, Vol. 161, 12-26, 2025.
doi:10.2528/pierc25070501

3. Guo, Yiming, Lei-Lei Qiu, Lianwen Deng, Yueyang Wu, Yumin Wang, and Shengxiang Huang, "Signal-interference-based quasi-reflectionless bandpass filter for wideband and high-selectivity," International Journal of Circuit Theory and Applications, Vol. 52, No. 7, 3144-3153, 2024.
doi:10.1002/cta.3950

4. Kuo, Jen-Tsai, Ching-Luh Hsu, and Eric Shih, "Compact planar quasi-elliptic function filter with inline stepped-impedance resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 8, 1747-1755, 2007.
doi:10.1109/tmtt.2007.901604

5. Wang, Jiajia, Shuo Yu, Xiaofan Yang, and Xiaoming Liu, "Bandpass filter for 5G sub‐6 GHz bands," Progress In Electromagnetics Research Letters, Vol. 116, 79-85, 2024.
doi:10.2528/pierl23120301

6. Ouyang, X. and Q.-X. Chu, "A mixed cross-coupling microstrip filter with multiple transmission zeros," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11-12, 1515-1524, 2011.
doi:10.1163/156939311797164936

7. Jiao, Yiwei, Haiwen Liu, Hongliang Tian, Ruolin Wang, and Fei Yang, "Design of high order wideband bandpass filter with wide stopband based on hairpin ring resonator," AEU --- International Journal of Electronics and Communications, Vol. 193, 155728, 2025.
doi:10.1016/j.aeue.2025.155728

8. Wei, X.-B., Y. Shi, P. Wang, J.-X. Liao, Z.-Q. Xu, and B. C. Yang, "Miniaturized mixed-cross coupling bandpass filter with source-load coupling," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 13, 1694-1699, 2012.
doi:10.1080/09205071.2012.708978

9. Xiao, Jian-Kang, Min Zhu, Yong Li, Li Tian, and Jian-Guo Ma, "High selective microstrip bandpass filter and diplexer with mixed electromagnetic coupling," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 12, 781-783, 2015.
doi:10.1109/lmwc.2015.2495194

10. Nwajana, Augustine O. and Emenike Raymond Obi, "Application of compact folded-arms square open-loop resonator to bandpass filter design," Micromachines, Vol. 14, No. 2, 320, 2023.
doi:10.3390/mi14020320

11. Zhao, Guangxiu, Chen Li, Minquan Li, Pingjuan Zhang, Yajing Yan, Xiaming Mo, and Ziyun Tu, "A novel miniaturized image rejection bandpass filter basing on stepped-impedance resonators," Progress In Electromagnetics Research Letters, Vol. 112, 27-34, 2023.
doi:10.2528/pierl23063006

12. Ono, S., Y. Harada, T. Kato, A. Saito, J. H. Lee, H. Kinouchi, T. Oba, M. Yoshizawa, and S. Ohshima, "Fabrication and measurement of 5 GHz miniaturized 10-pole bandpass filter using superconducting microstrip quasi-spiral resonators," Physica C: Superconductivity, Vol. 468, No. 15-20, 1969-1972, 2008.
doi:10.1016/j.physc.2008.05.112

13. Aghabagheri, S., M. Rasti, M. R. Mohammadizadeh, P. Kameli, H. Salamati, K. Mohammadpour-Aghdam, and R. Faraji-Dana, "High temperature superconducting YBCO microwave filters," Physica C: Superconductivity and its Applications, Vol. 549, 22-26, 2018.
doi:10.1016/j.physc.2018.02.057

14. Ren, Baoping, Xinlei Liu, Xuehui Guan, and Zhewang Ma, "High-selectivity high-temperature superconducting triband balanced bandpass filter using symmetric stub-loaded resonator," IEEE Transactions on Applied Superconductivity, Vol. 33, No. 8, 1-5, 2023.
doi:10.1109/tasc.2023.3315072

15. Ren, Baoping, Xuehui Guan, Haiwen Liu, Zhewang Ma, and Masataka Ohira, "Highly selective and controllable superconducting dual-band differential filter with attractive common-mode rejection," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 69, No. 3, 939-943, Mar. 2022.
doi:10.1109/tcsii.2021.3130891

16. Huang, Haibo, Yun Wu, Jia Wang, Yongbo Bian, Xu Wang, Guoqiang Li, Xueqiang Zhang, Chunguang Li, Liang Sun, and Yusheng He, "A wideband UHF high-temperature superconducting filter system with a fractional bandwidth over 108%," Physica C: Superconductivity and Its Applications, Vol. 550, 78-81, 2018.
doi:10.1016/j.physc.2018.04.014

17. Zhang, Ting, Jia Du, Yingjie Jay Guo, and Xiaowei Sun, "A compact HTS bandpass microstrip filter with novel coupling structure for on-chip integration," Physica C: Superconductivity, Vol. 495, 69-73, 2013.
doi:10.1016/j.physc.2013.08.002

18. Wu, Di, Bin Wei, Bo Li, Xu-Bo Guo, Xin-Xiang Lu, and Bi-Song Cao, "Compact wide stopband superconducting bandpass filter using modified spiral resonators with interdigital structure," Chinese Physics B, Vol. 27, No. 6, 068502, 2018.
doi:10.1088/1674-1056/27/6/068502

19. Liu, Haiwen, Baoping Ren, Shuangxi Hu, Xuehui Guan, Pin Wen, and Jiaming Tang, "High-order dual-band superconducting bandpass filter with controllable bandwidths and multitransmission zeros," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 10, 3813-3823, Oct. 2017.
doi:10.1109/tmtt.2017.2690295

20. Hong, Jia-Sheng and M. J. Lancaster, "Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 11, 2099-2109, 1996.
doi:10.1109/22.543968

21. Afzali, Behnam, Hamed Abbasi, Farzin Shama, and Ramin Dehdasht-Heydari, "A microstrip bandpass filter with deep rejection and low insertion loss for application at 2.4 GHz useful wireless frequency," AEU --- International Journal of Electronics and Communications, Vol. 138, 153811, 2021.
doi:10.1016/j.aeue.2021.153811

22. Chaudhary, Girdhari and Yongchae Jeong, "Arbitrary prescribed flat wideband group delay absorptive microstrip bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 2, 1404-1414, 2021.
doi:10.1109/tmtt.2020.3041483

23. Zakharov, Alexander, Sergii Rozenko, Liudmyla Pinchuk, and Sergii Litvintsev, "Microstrip quazi-elliptic bandpass filter with two pairs of antiparallel mixed-coupled SIRs," IEEE Microwave and Wireless Components Letters, Vol. 31, No. 5, 433-436, 2021.
doi:10.1109/lmwc.2021.3065394

24. Yu, Xiao, Weibin Xi, Songtao Wu, and Peiguang Yan, "A 12-pole VHF band high selective high temperature superconducting filter," Superconductor Science and Technology, Vol. 34, No. 1, 015002, 2020.
doi:10.1088/1361-6668/abbec5

25. Tan, Cheng, Yu Wang, Zhongming Yan, Xinyi Nie, Yonghai He, and Weirong Chen, "Superconducting filter based on split-ring resonator structures," IEEE Transactions on Applied Superconductivity, Vol. 29, No. 4, 1-4, 2019.
doi:10.1109/tasc.2019.2891017