Vol. 128
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2025-12-18
Design of a Compact High-Temperature Superconducting Bandpass Filter with Mixed Electromagnetic Coupling
By
Progress In Electromagnetics Research Letters, Vol. 128, 67-73, 2025
Abstract
This paper systematically analyzes the electromagnetic coupling characteristics between microstrip resonators and proposes a novel structure that enables mutual cancellation of electromagnetic coupling, effectively reducing the spacing between resonators. Based on this approach, a 14th-order compact high-temperature superconducting (HTS) microstrip bandpass filter is designed and implemented. By constructing a folded symmetric resonator structure to minimize the total electromagnetic coupling energy, and by optimizing the non-uniform coupling gaps in conjunction with the coupling characteristics, precise control of the coupling paths is achieved, leading to a significantly enhanced compactness. The filter is fabricated using double-sided YBCO HTS thin films and tested at liquid nitrogen temperature (77 K). Both simulation and measurement results show that the filter operates within the 0.96~1.06 GHz frequency band, exhibits an insertion loss below 0.4 dB, an out-of-band rejection better than 78 dB, and a passband edge roll-off rate exceeding 60 dB/MHz, demonstrating excellent performance in terms of low loss, wide bandwidth, and high suppression.
Citation
Chenhao Xu, Chenchen Wang, Yiqiuzi Shen, and Liguo Zhou, "Design of a Compact High-Temperature Superconducting Bandpass Filter with Mixed Electromagnetic Coupling," Progress In Electromagnetics Research Letters, Vol. 128, 67-73, 2025.
doi:10.2528/PIERL25110502
References

1. Li, Daotong, Ju-An Wang, Zhen Chen, Yaohui Zhang, Ming-Chun Tang, and Lisheng Yang, "Compact microstrip bandpass filter with sharp roll-off and broad stopband using modified 0° feed structure," AEU --- International Journal of Electronics and Communications, Vol. 109, 17-22, 2019.
doi:10.1016/j.aeue.2019.06.030        Google Scholar

2. Kadhom, Moretadha J., "High selectivity tri-coupled line bandpass filter based on even- and odd-mode impedance modeling," Progress In Electromagnetics Research C, Vol. 161, 12-26, 2025.
doi:10.2528/pierc25070501        Google Scholar

3. Guo, Yiming, Lei-Lei Qiu, Lianwen Deng, Yueyang Wu, Yumin Wang, and Shengxiang Huang, "Signal-interference-based quasi-reflectionless bandpass filter for wideband and high-selectivity," International Journal of Circuit Theory and Applications, Vol. 52, No. 7, 3144-3153, 2024.
doi:10.1002/cta.3950        Google Scholar

4. Kuo, Jen-Tsai, Ching-Luh Hsu, and Eric Shih, "Compact planar quasi-elliptic function filter with inline stepped-impedance resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 8, 1747-1755, 2007.
doi:10.1109/tmtt.2007.901604        Google Scholar

5. Wang, Jiajia, Shuo Yu, Xiaofan Yang, and Xiaoming Liu, "Bandpass filter for 5G sub‐6 GHz bands," Progress In Electromagnetics Research Letters, Vol. 116, 79-85, 2024.
doi:10.2528/pierl23120301        Google Scholar

6. Ouyang, X. and Q.-X. Chu, "A mixed cross-coupling microstrip filter with multiple transmission zeros," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11-12, 1515-1524, 2011.
doi:10.1163/156939311797164936        Google Scholar

7. Jiao, Yiwei, Haiwen Liu, Hongliang Tian, Ruolin Wang, and Fei Yang, "Design of high order wideband bandpass filter with wide stopband based on hairpin ring resonator," AEU --- International Journal of Electronics and Communications, Vol. 193, 155728, 2025.
doi:10.1016/j.aeue.2025.155728        Google Scholar

8. Wei, X.-B., Y. Shi, P. Wang, J.-X. Liao, Z.-Q. Xu, and B. C. Yang, "Miniaturized mixed-cross coupling bandpass filter with source-load coupling," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 13, 1694-1699, 2012.
doi:10.1080/09205071.2012.708978        Google Scholar

9. Xiao, Jian-Kang, Min Zhu, Yong Li, Li Tian, and Jian-Guo Ma, "High selective microstrip bandpass filter and diplexer with mixed electromagnetic coupling," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 12, 781-783, 2015.
doi:10.1109/lmwc.2015.2495194        Google Scholar

10. Nwajana, Augustine O. and Emenike Raymond Obi, "Application of compact folded-arms square open-loop resonator to bandpass filter design," Micromachines, Vol. 14, No. 2, 320, 2023.
doi:10.3390/mi14020320        Google Scholar

11. Zhao, Guangxiu, Chen Li, Minquan Li, Pingjuan Zhang, Yajing Yan, Xiaming Mo, and Ziyun Tu, "A novel miniaturized image rejection bandpass filter basing on stepped-impedance resonators," Progress In Electromagnetics Research Letters, Vol. 112, 27-34, 2023.
doi:10.2528/pierl23063006        Google Scholar

12. Ono, S., Y. Harada, T. Kato, A. Saito, J. H. Lee, H. Kinouchi, T. Oba, M. Yoshizawa, and S. Ohshima, "Fabrication and measurement of 5 GHz miniaturized 10-pole bandpass filter using superconducting microstrip quasi-spiral resonators," Physica C: Superconductivity, Vol. 468, No. 15-20, 1969-1972, 2008.
doi:10.1016/j.physc.2008.05.112        Google Scholar

13. Aghabagheri, S., M. Rasti, M. R. Mohammadizadeh, P. Kameli, H. Salamati, K. Mohammadpour-Aghdam, and R. Faraji-Dana, "High temperature superconducting YBCO microwave filters," Physica C: Superconductivity and its Applications, Vol. 549, 22-26, 2018.
doi:10.1016/j.physc.2018.02.057        Google Scholar

14. Ren, Baoping, Xinlei Liu, Xuehui Guan, and Zhewang Ma, "High-selectivity high-temperature superconducting triband balanced bandpass filter using symmetric stub-loaded resonator," IEEE Transactions on Applied Superconductivity, Vol. 33, No. 8, 1-5, 2023.
doi:10.1109/tasc.2023.3315072        Google Scholar

15. Ren, Baoping, Xuehui Guan, Haiwen Liu, Zhewang Ma, and Masataka Ohira, "Highly selective and controllable superconducting dual-band differential filter with attractive common-mode rejection," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 69, No. 3, 939-943, Mar. 2022.
doi:10.1109/tcsii.2021.3130891        Google Scholar

16. Huang, Haibo, Yun Wu, Jia Wang, Yongbo Bian, Xu Wang, Guoqiang Li, Xueqiang Zhang, Chunguang Li, Liang Sun, and Yusheng He, "A wideband UHF high-temperature superconducting filter system with a fractional bandwidth over 108%," Physica C: Superconductivity and Its Applications, Vol. 550, 78-81, 2018.
doi:10.1016/j.physc.2018.04.014        Google Scholar

17. Zhang, Ting, Jia Du, Yingjie Jay Guo, and Xiaowei Sun, "A compact HTS bandpass microstrip filter with novel coupling structure for on-chip integration," Physica C: Superconductivity, Vol. 495, 69-73, 2013.
doi:10.1016/j.physc.2013.08.002        Google Scholar

18. Wu, Di, Bin Wei, Bo Li, Xu-Bo Guo, Xin-Xiang Lu, and Bi-Song Cao, "Compact wide stopband superconducting bandpass filter using modified spiral resonators with interdigital structure," Chinese Physics B, Vol. 27, No. 6, 068502, 2018.
doi:10.1088/1674-1056/27/6/068502        Google Scholar

19. Liu, Haiwen, Baoping Ren, Shuangxi Hu, Xuehui Guan, Pin Wen, and Jiaming Tang, "High-order dual-band superconducting bandpass filter with controllable bandwidths and multitransmission zeros," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 10, 3813-3823, Oct. 2017.
doi:10.1109/tmtt.2017.2690295        Google Scholar

20. Hong, Jia-Sheng and M. J. Lancaster, "Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 11, 2099-2109, 1996.
doi:10.1109/22.543968        Google Scholar

21. Afzali, Behnam, Hamed Abbasi, Farzin Shama, and Ramin Dehdasht-Heydari, "A microstrip bandpass filter with deep rejection and low insertion loss for application at 2.4 GHz useful wireless frequency," AEU --- International Journal of Electronics and Communications, Vol. 138, 153811, 2021.
doi:10.1016/j.aeue.2021.153811        Google Scholar

22. Chaudhary, Girdhari and Yongchae Jeong, "Arbitrary prescribed flat wideband group delay absorptive microstrip bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 2, 1404-1414, 2021.
doi:10.1109/tmtt.2020.3041483        Google Scholar

23. Zakharov, Alexander, Sergii Rozenko, Liudmyla Pinchuk, and Sergii Litvintsev, "Microstrip quazi-elliptic bandpass filter with two pairs of antiparallel mixed-coupled SIRs," IEEE Microwave and Wireless Components Letters, Vol. 31, No. 5, 433-436, 2021.
doi:10.1109/lmwc.2021.3065394        Google Scholar

24. Yu, Xiao, Weibin Xi, Songtao Wu, and Peiguang Yan, "A 12-pole VHF band high selective high temperature superconducting filter," Superconductor Science and Technology, Vol. 34, No. 1, 015002, 2020.
doi:10.1088/1361-6668/abbec5        Google Scholar

25. Tan, Cheng, Yu Wang, Zhongming Yan, Xinyi Nie, Yonghai He, and Weirong Chen, "Superconducting filter based on split-ring resonator structures," IEEE Transactions on Applied Superconductivity, Vol. 29, No. 4, 1-4, 2019.
doi:10.1109/tasc.2019.2891017        Google Scholar