Vol. 129
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2026-02-13
Improving Gain-Bandwidth Product of Modified Split Ring Resonators for 6G Wireless Networks
By
Progress In Electromagnetics Research Letters, Vol. 129, 21-28, 2026
Abstract
Metamaterials are emerging as a key enabler for 6G wireless communications, attracting growing attention from industry due to their engineered electromagnetic properties that enable control over wave propagation. Metamaterials have shown promise across diverse applications; however, the desire to achieve 1 TBPS data rates in 6G communications is partially constrained by a major fundamental challenge in metamaterials: achieving gigahertz of instantaneous bandwidth (IBW) values. To address the IBW issue, we designed, fabricated, and tested a fundamental component of metamaterial, i.e., a modified split ring resonator (MSRR), achieving 90% of the targeted 1 GHz IBW and an effective permeability (μeff) close to 25 within the IBW. In addition, the gain-bandwidth product (GBWP) is over 1.5× greater than that of commercial 5G antennas, while maintaining the same aperture size of 1.59λc. We studied and reported the effect of MSRR frequency-dependent μeff on the IBW and GBWP and proposed an optimized MSRR design that achieves 3× the bandwidth of a conventional SRR. Finally, we integrated the proposed MSRR atop a wideband patch antenna, enhancing peak realized gain by 6 dBi.
Citation
Al-Moatasem Al-Hinaai, Anthony N. Caruso, Travis D. Fields, Mohamed Z. M. Hamdalla, and Kalyan C. Durbhakula, "Improving Gain-Bandwidth Product of Modified Split Ring Resonators for 6G Wireless Networks," Progress In Electromagnetics Research Letters, Vol. 129, 21-28, 2026.
doi:10.2528/PIERL26011302
References

1. Salgarkar, R., "Metamaterials market worth $1,387 million by 2029," MarketsandMarkets, Report, Available: https://www.prnewswire.com/news-releases/metamaterial-market-worth-1-38-billion-by-2029-exclusive-report-by-marketsandmarkets-302298490.html, 2024.

2. Singh, Amit Kumar, Mahesh P. Abegaonkar, and Shiban K. Koul, "A negative index metamaterial lens for antenna gain enhancement," 2017 International Symposium on Antennas and Propagation (ISAP), 1-2, Phuket, Thailand, 2017.
doi:10.1109/ISANP.2017.8228814

3. Zhou, H., Z. Pei, S. Qu, S. Zhang, J. Wang, Q. Li, and Z. Xu, "A planar zero-index metamaterial for directive emission," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 953-962, 2009.
doi:10.1163/156939309788355289        Google Scholar

4. Ali, Wael A. E., Hesham A. Mohamed, Ahmed A. Ibrahim, and Mohamed Z. M. Hamdalla, "Gain improvement of tunable band-notched UWB antenna using metamaterial lens for high speed wireless communications," Microsystem Technologies, Vol. 25, No. 11, 4111-4117, 2019.
doi:10.1007/s00542-018-04285-z        Google Scholar

5. Hamad, Ehab K. I., Wael A. E. Ali, Mohamed Z. M. Hamdalla, and Mohamed A. Bassiuny, "High gain triple band microstrip antenna based on metamaterial super lens for wireless communication applications," 2018 International Conference on Innovative Trends in Computer Engineering (ITCE), 197-204, Aswan, Egypt, 2018.
doi:10.1109/ITCE.2018.8316624

6. Enoch, Stefan, Gérard Tayeb, Pierre Sabouroux, Nicolas Guérin, and Patrick Vincent, "A metamaterial for directive emission," Physical Review Letters, Vol. 89, No. 21, 213902, 2002.
doi:10.1103/physrevlett.89.213902        Google Scholar

7. Islam, Md. Rashedul, Badariah Bais, Md. Samsuzzaman, Md. Zulfiker Mahmud, Haslina Arshad, Norsuzlin Mohd Sahar, and Mandeep Singh Jit Singh, "G loaded complementary split square ring resonator-based SNG metamaterial for Wi-Fi, IoT & satellite applications," 2021 7th International Conference on Space Science and Communication (IconSpace), 313-317, Selangor, Malaysia, 2021.
doi:10.1109/IconSpace53224.2021.9768678

8. Alam, Md. Jubaer, Mohammad Rashed Iqbal Faruque, Taya Allen, Sabirin Abdullah, Mohammad Tariqul Islam, Khairul Nizam Abdul Maulud, and Eistiak Ahamed, "Depiction and analysis of a modified theta shaped double negative metamaterial for satellite application," Open Physics, Vol. 16, No. 1, 839-847, 2018.
doi:10.1515/phys-2018-0105        Google Scholar

9. Ali, W. A. E. and M. Z. M. Hamdalla, "Compact triple band-stop filter using novel epsilon-shaped metamaterial with lumped capacitor," Journal of Instrumentation, Vol. 13, No. 4, P04007, 2018.
doi:10.1088/1748-0221/13/04/p04007        Google Scholar

10. Azim, R., M. T. Islam, J. S. Mandeep, and A. T. Mobashsher, "A planar circular ring ultra-wideband antenna with dual band-notched characteristics," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 14-15, 2022-2032, 2012.
doi:10.1080/09205071.2012.724189        Google Scholar

11. Kumar, Praveen, Tanweer Ali, and M. M. Manohara Pai, "Electromagnetic metamaterials: A new paradigm of antenna design," IEEE Access, Vol. 9, 18722-18751, 2021.
doi:10.1109/access.2021.3053100        Google Scholar

12. Chamkur, Deepthi V. and C. R. Byrareddy, "4G shaped wide band patch antenna for wireless applications," 2018 3rd International Conference on Communication and Electronics Systems (ICCES), 323-328, Coimbatore, India, 2018.
doi:10.1109/CESYS.2018.8723907

13. Ruze, J., "Antenna tolerance theory --- A review," Proceedings of the IEEE, Vol. 54, No. 4, 633-640, Apr. 1966.
doi:10.1109/proc.1966.4784        Google Scholar

14. Zhang, Xiao and Lei Zhu, "Gain-enhanced patch antenna without enlarged size via loading of slot and shorting pins," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 11, 5702-5709, Nov. 2017.
doi:10.1109/tap.2017.2751658        Google Scholar

15. Smith, David Richard, Ruopeng Liu, and Tie Jun Cui, Metamaterials: Theory, Design, and Applications, Springer US, 2010.

16. Padilla, Willie J. and Richard D. Averitt, "Imaging with metamaterials," Nature Reviews Physics, Vol. 4, No. 2, 85-100, 2022.
doi:10.1038/s42254-021-00394-3        Google Scholar

17. Khoutar, F. Z., M. Aznabet, and O. E. Mrabet, "Gain and directivity enhancement of a rectangular microstrip patch antenna using a single layer metamaterial superstrate," 2018 6th International Conference on Multimedia Computing and Systems (ICMCS), 1-4, Rabat, Morocco, 2018.
doi:10.1109/ICMCS.2018.8525893

18. Choudhary, Ajay Kumar, Sujit Barman, Tamasi Moyra, Anjan Debnath, and Anirban Bhattacharjee, "Gain enhancement of dual-band microstrip-fed antenna with complementary split ring resonators and rectangular slots embedded in patch for wireless applications using metamaterial cell-based superstrate," 2021 2nd International Conference on Range Technology (ICORT), 1-6, Chandipur, Balasore, India, 2021.
doi:10.1109/ICORT52730.2021.9581727

19. Lakshmana, V. N., M. Satyanarayana, and S. P. Singh, "Performance study of rectangular microstrip patch antennas with split ring resonator structure," 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), 336-340, Palladam, India, 2018.
doi:10.1109/I-SMAC.2018.8653664

20. Saha, Debadrita, Ajay Kumar Choudhary, and Tamasi Moyra, "Dual band microstrip patch antenna and its gain enhancement for X band and Ku band application using metamaterial," 2021 7th International Conference on Signal Processing and Communication (ICSC), 48-52, Noida, India, 2021.
doi:10.1109/ICSC53193.2021.9673217

21. Mishra, Pranjalee, Rishitha Komatineni, and K. D. Kulat, "Millimeter wave MPA using metamaterial-substrate antenna array for gain enhancement," 2023 National Conference on Communications (NCC), 1-4, Guwahati, India, 2023.
doi:10.1109/NCC56989.2023.10068072

22. Abdelkarim, Mahdi, Majdi Bahrouni, and Ali Gharsallah, "A compact triple band antenna based on multiple split-ring resonators for wireless applications," Electronics, Vol. 14, No. 11, 2271, 2025.
doi:10.3390/electronics14112271        Google Scholar

23. Zerrouk, Abderraoufe, Mohamed Lamine Tounsi, Tan Phu Vuong, Nicolas Corrao, and Mustapha C. E. Yagoub, "Miniaturized patch array antenna using CSRR structures for 5G millimeter-wave communication systems," Electronics, Vol. 14, No. 9, 1834, 2025.
doi:10.3390/electronics14091834        Google Scholar

24. Gao, Xi, Li Yan He, Si Jie Yin, Chun Hua Xue, Guo Fu Wang, Xian Ming Xie, Han Xiong, Qiang Cheng, and Tie Jun Cui, "Ultra-wideband low-RCS circularly polarized antennas realized by bilayer polarization conversion metasurfaces and novel feeding networks," IEEE Transactions on Antennas and Propagation, Vol. 72, No. 2, 1959-1964, Feb. 2024.
doi:10.1109/tap.2023.3344211        Google Scholar

25. Barkal, Youssef, Jamal Zbitou, Larbi El Abdellaoui, Aziz Oukaira, and Mostafa Hefnawi, "Ultra-wideband cross-polarization conversion metamaterial unit cell stable to incident angles at C-band," 2024 Mediterranean Smart Cities Conference (MSCC), 1-5, Martil-Tetuan, Morocco, 2024.
doi:10.1109/MSCC62288.2024.10697088

26. Osman, Malaz, Jawad Yousaf, Eqab Almajali, Mousa I. Hussein, Saqer S. Alja'afreh, Amir Altaf, and Manzoor Elahi, "Ultra wideband highly efficient cross polarization conversion metasurface for multi-band applications," 2023 Advances in Science and Engineering Technology International Conferences (ASET), 1-4, Dubai, United Arab Emirates, 2023.
doi:10.1109/ASET56582.2023.10180826

27. Tamandani, Abdolshakoor, Javad Ahmadi-Shokouh, and Saeed Tavakoli, "Wideband planar split ring resonator based metamaterials," Progress In Electromagnetics Research M, Vol. 28, 115-128, 2013.
doi:10.2528/pierm12120318        Google Scholar

28. Attia, Hussein, Leila Yousefi, Mohammed M. Bait-Suwailam, Muhammed S. Boybay, and Omar M. Ramahi, "Enhanced-gain microstrip antenna using engineered magnetic superstrates," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1198-1201, 2009.
doi:10.1109/lawp.2009.2035149        Google Scholar

29. Tan, Cheng, Yu Wang, Zhongming Yan, Xinyi Nie, Yonghai He, and Weirong Chen, "Superconducting filter based on split-ring resonator structures," IEEE Transactions on Applied Superconductivity, Vol. 29, No. 4, 1-4, 2019.
doi:10.1109/tasc.2019.2891017        Google Scholar

30. Wang, Quan, Yewen Zhang, Kai Fang, and Yunhui Li, "Magnetic polarizability of the metamaterials with negative permeability," 2017 1st International Conference on Electrical Materials and Power Equipment (ICEMPE), 33-35, Xi'an, China, 2017.
doi:10.1109/ICEMPE.2017.7982047

31. Rajni and A. Marwaha, "An accurate approach of mathematical modeling of SRR and SR for metamaterials," Journal of Engineering Science & Technology Review, Vol. 9, No. 6, 82-86, 2016.
doi:10.25103/jestr.096.11        Google Scholar

32. Lheurette, Éric, "Metamaterials for non-radiative microwave functions and antennas," Metamaterials and Wave Control, 67-86, 2013.
doi:10.1002/9781118762080.ch3        Google Scholar

33. Alibakhshikenari, Mohammad, Bal S. Virdee, Taha A. Elwi, Innocent D. Lubangakene, Renu K. R. Jayanthi, Amer Abbood Al-Behadili, Zaid A. Abdul Hassain, Syed Mansoor Ali, Giovanni Pau, Patrizia Livreri, and Sonia Aïssa, "Design of a planar sensor based on split-ring resonators for non-invasive permittivity measurement," Sensors, Vol. 23, No. 11, 5306, 2023.
doi:10.3390/s23115306        Google Scholar

34. Hassan, Ahmed M., Jan Obrzut, and Edward J. Garboczi, "A Q-band free-space characterization of carbon nanotube composites," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 11, 3807-3819, Nov. 2016.
doi:10.1109/tmtt.2016.2603500        Google Scholar

35. Moniruzzaman, Md., Mohammad Tariqul Islam, Md. Rashedul Islam, Norbahiah Misran, and Md. Samsuzzaman, "Coupled ring split ring resonator (CR-SRR) based epsilon negative metamaterial for multiband wireless communications with high effective medium ratio," Results in Physics, Vol. 18, 103248, 2020.
doi:10.1016/j.rinp.2020.103248        Google Scholar