1. Salgarkar, R., "Metamaterials market worth $1,387 million by 2029," MarketsandMarkets, Report, Available: https://www.prnewswire.com/news-releases/metamaterial-market-worth-1-38-billion-by-2029-exclusive-report-by-marketsandmarkets-302298490.html, 2024.
2. Singh, Amit Kumar, Mahesh P. Abegaonkar, and Shiban K. Koul, "A negative index metamaterial lens for antenna gain enhancement," 2017 International Symposium on Antennas and Propagation (ISAP), 1-2, Phuket, Thailand, 2017.
doi:10.1109/ISANP.2017.8228814
3. Zhou, H., Z. Pei, S. Qu, S. Zhang, J. Wang, Q. Li, and Z. Xu, "A planar zero-index metamaterial for directive emission," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 953-962, 2009.
doi:10.1163/156939309788355289 Google Scholar
4. Ali, Wael A. E., Hesham A. Mohamed, Ahmed A. Ibrahim, and Mohamed Z. M. Hamdalla, "Gain improvement of tunable band-notched UWB antenna using metamaterial lens for high speed wireless communications," Microsystem Technologies, Vol. 25, No. 11, 4111-4117, 2019.
doi:10.1007/s00542-018-04285-z Google Scholar
5. Hamad, Ehab K. I., Wael A. E. Ali, Mohamed Z. M. Hamdalla, and Mohamed A. Bassiuny, "High gain triple band microstrip antenna based on metamaterial super lens for wireless communication applications," 2018 International Conference on Innovative Trends in Computer Engineering (ITCE), 197-204, Aswan, Egypt, 2018.
doi:10.1109/ITCE.2018.8316624
6. Enoch, Stefan, Gérard Tayeb, Pierre Sabouroux, Nicolas Guérin, and Patrick Vincent, "A metamaterial for directive emission," Physical Review Letters, Vol. 89, No. 21, 213902, 2002.
doi:10.1103/physrevlett.89.213902 Google Scholar
7. Islam, Md. Rashedul, Badariah Bais, Md. Samsuzzaman, Md. Zulfiker Mahmud, Haslina Arshad, Norsuzlin Mohd Sahar, and Mandeep Singh Jit Singh, "G loaded complementary split square ring resonator-based SNG metamaterial for Wi-Fi, IoT & satellite applications," 2021 7th International Conference on Space Science and Communication (IconSpace), 313-317, Selangor, Malaysia, 2021.
doi:10.1109/IconSpace53224.2021.9768678
8. Alam, Md. Jubaer, Mohammad Rashed Iqbal Faruque, Taya Allen, Sabirin Abdullah, Mohammad Tariqul Islam, Khairul Nizam Abdul Maulud, and Eistiak Ahamed, "Depiction and analysis of a modified theta shaped double negative metamaterial for satellite application," Open Physics, Vol. 16, No. 1, 839-847, 2018.
doi:10.1515/phys-2018-0105 Google Scholar
9. Ali, W. A. E. and M. Z. M. Hamdalla, "Compact triple band-stop filter using novel epsilon-shaped metamaterial with lumped capacitor," Journal of Instrumentation, Vol. 13, No. 4, P04007, 2018.
doi:10.1088/1748-0221/13/04/p04007 Google Scholar
10. Azim, R., M. T. Islam, J. S. Mandeep, and A. T. Mobashsher, "A planar circular ring ultra-wideband antenna with dual band-notched characteristics," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 14-15, 2022-2032, 2012.
doi:10.1080/09205071.2012.724189 Google Scholar
11. Kumar, Praveen, Tanweer Ali, and M. M. Manohara Pai, "Electromagnetic metamaterials: A new paradigm of antenna design," IEEE Access, Vol. 9, 18722-18751, 2021.
doi:10.1109/access.2021.3053100 Google Scholar
12. Chamkur, Deepthi V. and C. R. Byrareddy, "4G shaped wide band patch antenna for wireless applications," 2018 3rd International Conference on Communication and Electronics Systems (ICCES), 323-328, Coimbatore, India, 2018.
doi:10.1109/CESYS.2018.8723907
13. Ruze, J., "Antenna tolerance theory --- A review," Proceedings of the IEEE, Vol. 54, No. 4, 633-640, Apr. 1966.
doi:10.1109/proc.1966.4784 Google Scholar
14. Zhang, Xiao and Lei Zhu, "Gain-enhanced patch antenna without enlarged size via loading of slot and shorting pins," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 11, 5702-5709, Nov. 2017.
doi:10.1109/tap.2017.2751658 Google Scholar
15. Smith, David Richard, Ruopeng Liu, and Tie Jun Cui, Metamaterials: Theory, Design, and Applications, Springer US, 2010.
16. Padilla, Willie J. and Richard D. Averitt, "Imaging with metamaterials," Nature Reviews Physics, Vol. 4, No. 2, 85-100, 2022.
doi:10.1038/s42254-021-00394-3 Google Scholar
17. Khoutar, F. Z., M. Aznabet, and O. E. Mrabet, "Gain and directivity enhancement of a rectangular microstrip patch antenna using a single layer metamaterial superstrate," 2018 6th International Conference on Multimedia Computing and Systems (ICMCS), 1-4, Rabat, Morocco, 2018.
doi:10.1109/ICMCS.2018.8525893
18. Choudhary, Ajay Kumar, Sujit Barman, Tamasi Moyra, Anjan Debnath, and Anirban Bhattacharjee, "Gain enhancement of dual-band microstrip-fed antenna with complementary split ring resonators and rectangular slots embedded in patch for wireless applications using metamaterial cell-based superstrate," 2021 2nd International Conference on Range Technology (ICORT), 1-6, Chandipur, Balasore, India, 2021.
doi:10.1109/ICORT52730.2021.9581727
19. Lakshmana, V. N., M. Satyanarayana, and S. P. Singh, "Performance study of rectangular microstrip patch antennas with split ring resonator structure," 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), 336-340, Palladam, India, 2018.
doi:10.1109/I-SMAC.2018.8653664
20. Saha, Debadrita, Ajay Kumar Choudhary, and Tamasi Moyra, "Dual band microstrip patch antenna and its gain enhancement for X band and Ku band application using metamaterial," 2021 7th International Conference on Signal Processing and Communication (ICSC), 48-52, Noida, India, 2021.
doi:10.1109/ICSC53193.2021.9673217
21. Mishra, Pranjalee, Rishitha Komatineni, and K. D. Kulat, "Millimeter wave MPA using metamaterial-substrate antenna array for gain enhancement," 2023 National Conference on Communications (NCC), 1-4, Guwahati, India, 2023.
doi:10.1109/NCC56989.2023.10068072
22. Abdelkarim, Mahdi, Majdi Bahrouni, and Ali Gharsallah, "A compact triple band antenna based on multiple split-ring resonators for wireless applications," Electronics, Vol. 14, No. 11, 2271, 2025.
doi:10.3390/electronics14112271 Google Scholar
23. Zerrouk, Abderraoufe, Mohamed Lamine Tounsi, Tan Phu Vuong, Nicolas Corrao, and Mustapha C. E. Yagoub, "Miniaturized patch array antenna using CSRR structures for 5G millimeter-wave communication systems," Electronics, Vol. 14, No. 9, 1834, 2025.
doi:10.3390/electronics14091834 Google Scholar
24. Gao, Xi, Li Yan He, Si Jie Yin, Chun Hua Xue, Guo Fu Wang, Xian Ming Xie, Han Xiong, Qiang Cheng, and Tie Jun Cui, "Ultra-wideband low-RCS circularly polarized antennas realized by bilayer polarization conversion metasurfaces and novel feeding networks," IEEE Transactions on Antennas and Propagation, Vol. 72, No. 2, 1959-1964, Feb. 2024.
doi:10.1109/tap.2023.3344211 Google Scholar
25. Barkal, Youssef, Jamal Zbitou, Larbi El Abdellaoui, Aziz Oukaira, and Mostafa Hefnawi, "Ultra-wideband cross-polarization conversion metamaterial unit cell stable to incident angles at C-band," 2024 Mediterranean Smart Cities Conference (MSCC), 1-5, Martil-Tetuan, Morocco, 2024.
doi:10.1109/MSCC62288.2024.10697088
26. Osman, Malaz, Jawad Yousaf, Eqab Almajali, Mousa I. Hussein, Saqer S. Alja'afreh, Amir Altaf, and Manzoor Elahi, "Ultra wideband highly efficient cross polarization conversion metasurface for multi-band applications," 2023 Advances in Science and Engineering Technology International Conferences (ASET), 1-4, Dubai, United Arab Emirates, 2023.
doi:10.1109/ASET56582.2023.10180826
27. Tamandani, Abdolshakoor, Javad Ahmadi-Shokouh, and Saeed Tavakoli, "Wideband planar split ring resonator based metamaterials," Progress In Electromagnetics Research M, Vol. 28, 115-128, 2013.
doi:10.2528/pierm12120318 Google Scholar
28. Attia, Hussein, Leila Yousefi, Mohammed M. Bait-Suwailam, Muhammed S. Boybay, and Omar M. Ramahi, "Enhanced-gain microstrip antenna using engineered magnetic superstrates," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1198-1201, 2009.
doi:10.1109/lawp.2009.2035149 Google Scholar
29. Tan, Cheng, Yu Wang, Zhongming Yan, Xinyi Nie, Yonghai He, and Weirong Chen, "Superconducting filter based on split-ring resonator structures," IEEE Transactions on Applied Superconductivity, Vol. 29, No. 4, 1-4, 2019.
doi:10.1109/tasc.2019.2891017 Google Scholar
30. Wang, Quan, Yewen Zhang, Kai Fang, and Yunhui Li, "Magnetic polarizability of the metamaterials with negative permeability," 2017 1st International Conference on Electrical Materials and Power Equipment (ICEMPE), 33-35, Xi'an, China, 2017.
doi:10.1109/ICEMPE.2017.7982047
31. Rajni and A. Marwaha, "An accurate approach of mathematical modeling of SRR and SR for metamaterials," Journal of Engineering Science & Technology Review, Vol. 9, No. 6, 82-86, 2016.
doi:10.25103/jestr.096.11 Google Scholar
32. Lheurette, Éric, "Metamaterials for non-radiative microwave functions and antennas," Metamaterials and Wave Control, 67-86, 2013.
doi:10.1002/9781118762080.ch3 Google Scholar
33. Alibakhshikenari, Mohammad, Bal S. Virdee, Taha A. Elwi, Innocent D. Lubangakene, Renu K. R. Jayanthi, Amer Abbood Al-Behadili, Zaid A. Abdul Hassain, Syed Mansoor Ali, Giovanni Pau, Patrizia Livreri, and Sonia Aïssa, "Design of a planar sensor based on split-ring resonators for non-invasive permittivity measurement," Sensors, Vol. 23, No. 11, 5306, 2023.
doi:10.3390/s23115306 Google Scholar
34. Hassan, Ahmed M., Jan Obrzut, and Edward J. Garboczi, "A Q-band free-space characterization of carbon nanotube composites," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 11, 3807-3819, Nov. 2016.
doi:10.1109/tmtt.2016.2603500 Google Scholar
35. Moniruzzaman, Md., Mohammad Tariqul Islam, Md. Rashedul Islam, Norbahiah Misran, and Md. Samsuzzaman, "Coupled ring split ring resonator (CR-SRR) based epsilon negative metamaterial for multiband wireless communications with high effective medium ratio," Results in Physics, Vol. 18, 103248, 2020.
doi:10.1016/j.rinp.2020.103248 Google Scholar