Vol. 5
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-02-19
Support Vector Characterisation of the Microstrip Antennas Based on Measurements
By
Progress In Electromagnetics Research B, Vol. 5, 49-61, 2008
Abstract
In this work, Support Vector Machine (SVM) formulation is worked out based upon ''L'' measured data for the resonant frequency, operation bandwidth, input impedance of a rectangular microstrip antenna. Results of the formulation are compared with the theoretical results obtained in literature, much better characterization is observed with greater accuracy. At the same time, Artificial Neural Network (ANN) is employed in generalization of the data on the resonant frequency, operation bandwidth, and input impedance of the antenna. Performances of the two advanced nonlinear learning machines are compared and superiority of the SVM is verified.
Citation
Nurhan Türker Tokan, and Filiz Gunes, "Support Vector Characterisation of the Microstrip Antennas Based on Measurements," Progress In Electromagnetics Research B, Vol. 5, 49-61, 2008.
doi:10.2528/PIERB08013006
References

1. Balanis, C. A., Antenna Theory, John Wiley & Sons, Inc., 1997.

2. Bahl, J. and P. Bhartia, Microstrip Antennas, Artech House, Dedham, MA, 1980.

3. Sagıroglu, S., K. Guney, and M. Erler, "Calculation of bandwidth for electrically thin and thick rectangular microstrip antennas with the use of multilayered perceptions," Int. Journal of RF and Microwave CAE, Vol. 9, 277-286, 1999.
doi:10.1002/(SICI)1099-047X(199905)9:3<277::AID-MMCE11>3.0.CO;2-3

4. Guney, K., M. Erler, and S. Sagıroglu, "Artificial neural networks for the resonant resistance calculation of electrically thin and thick rectangular microstrip antennas," Electromagnetics, Vol. 20, 387-400, 2000.
doi:10.1080/027263400750064392

5. Karaboga, D., K. Guney, S. Sagıroglu, and M. Erler, "Neural computation of resonant frequency of electrically thin and thick rectangular microstrip antennas," IEE Proc. Microwaves, Antennas Propagation, Vol. 146, No. 2, 155-159, 1999.
doi:10.1049/ip-map:19990136

6. Li, L. and Y.-J. Xie, "Efficient algorithm for analyzing microstrip antennas using fast-multipole algorithm combined with fixed real-image simulated method," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2177-2188, 2006.
doi:10.1163/156939306779322521

7. Akdagli, A., "An empirical expression for the edge extension in calculating resonant frequency of rectangular microstrip antennas with thin and thick substrates," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 9, 1247-1255, 2007.

8. Kumar, P., T. Chakravarty, S. Bhooshan, S. K. Khah, and A. De, "Numerical computation of resonant frequency of gap coupled circular microstrip antennas," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 10, 1303-1311, 2007.
doi:10.1163/156939307783239465

9. Yang, R., Y.-J. Xie, D. Li, J. Zhang, and J. Jiang, "Bandwidth enhancement of microstrip antennas with metamaterial bilayered substrates," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2321-2330, 2007.
doi:10.1163/156939307783134425

10. Vapnik, V. N., Statistical Learning Theory, Wiley, New York, 1998.

11. Cristianini, N. and J. Shawe-Taylor, An Introduction to Support Vector Machines (and Other Kernel-based Learning Methods), Cambridge University Press, 2000.

12. Ganapathiraju, A., J. E. Hamaker, and J. Picone, "Applications of support vector machines to speech recognition," IEEE Trans. on Signal Processing, Vol. 52, No. 8, 2348-2356, 2004.
doi:10.1109/TSP.2004.831018

13. Rojo-Alvarez, J. L., G. Camps-Valls, M. Martinez-Ramon, E. Soria-Olivas, A. Navia-Vazquez, and A. R. Figueiras-Vidal, "Support vector machines framework for linear signal processing," Signal Processing, Vol. 85, No. 12, 2316-2326, 2005.
doi:10.1016/j.sigpro.2004.12.015

14. Wu, Y. Q., Z. X. Tang, B. Zhang, and Y. H. Xu, "Permeability measurement of ferromagnetic materials in microwave frequency range using support vector machine regression," Progress In Electromagnetics Research, Vol. 70, 247-256, 2007.
doi:10.2528/PIER07012801

15. Christodoulou, C., M. Martinez-Ramon, and C. Balanis, "Support Vector Machines for Antenna Array Processing and Electromagnetics," Morgan & Claypool Publishers, 2006.

16. Pastorino, M. and A. Randazzo, "A smart antenna system for direction of arrival estimation based on a support vector regression," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 7, 2161-2168, 2005.
doi:10.1109/TAP.2005.850735

17. Zhao, Q. and J. Principe, "Automatic target recognition with support vector machines," Neural Information Processing Systems Workshop on Large Margin Classifiers, December 1998.

18. Xia, L., R. Xu, and B. Yan, "LTCC interconnect modeling by support vector regression," Progress In Electromagnetics Research, Vol. 69, 67-75, 2007.
doi:10.2528/PIER06120503

19. Gunes, F., N. Turker, and F. Gurgen, "Signal-noise support vector model of a microwave transistor," Int. Journal of RF and Microwave CAE, Vol. 17, 404-415, 2007.
doi:10.1002/mmce.20239

20. Xu, Y. H., Y. Guo, L. Xia, and Y. Q. Wu, "A support vector regression based nonlinear modeling method for Sic Mesfet," Progress In Electromagnetics Research Letters, Vol. 2, 103-114, 2008.

21. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Artificial neural networks for calculating the characteristic impedance of air-suspended trapezoidal and rectangular-shaped microshield lines," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 9, 1161-1174, 2006.
doi:10.1163/156939306777442917

22. Yildiz, C. and M. Turkmen, "Quasi-static models based on artificial neural neworks for calculating the characteristic parameters of multilayer cylindrical coplanar waveguide and strip line," Progress In Electromagnetics Research B, Vol. 3, 1-22, 2008.
doi:10.2528/PIERB07112806

23. Mohamed, M. A., E. A. Soliman, and M. A. El-Gamal, "Optimization and characterization of electromagnetically coupled patch antennas using RBF neural networks," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1101-1114, 2006.
doi:10.1163/156939306776930240

24. Zainud-Deen, S. H., H. A. Malhat, K. H. Awadalla, and E. S. El-Hadad, "Direction of arrival and state of polarization estimation using radial basis function neural network (RBFNN)," Progress In Electromagnetics Research B, Vol. 2, 137-150, 2008.
doi:10.2528/PIERB07111801

25. Yildiz, C., K. Guney, M. Turkmen, and S. Kaya, "Neural models for coplanar strip line synthesis," Progress In Electromagnetics Research, Vol. 69, 127-144, 2007.
doi:10.2528/PIER06120802

26. Ayestaran, R. G. and F. Las-Heras, "Near field to far field transformation using neural networks and source reconstruction," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2201-2213, 2006.
doi:10.1163/156939306779322594

27. Pozar, D. M., "Microstrip antennas," Proc.. IEEE, Vol. 80, No. 1, 79-81, 1992.
doi:10.1109/5.119568

28. Kara, M., "A novel technique to calculate the bandwidth of rectangular microstrip antenna elements with thick substrates ," Microwave Opt. Technol. Lett., Vol. 12, 59-64, 1996.
doi:10.1002/(SICI)1098-2760(199605)12:1<16::AID-MOP4>3.0.CO;2-R

29. Kara, M., "A simple technique for the calculation of bandwidth of rectangular microstrip antenna elements with various substrate thicknesses," Microwave Opt. Technol. Lett., Vol. 12, 16-20, 1996.
doi:10.1002/(SICI)1098-2760(199605)12:1<16::AID-MOP4>3.0.CO;2-R

30. Kara, M., "The calculation of the input resistance of rectangular microstrip antenna elements with various substrate thicknesses," Microwave Opt. Technol. Lett., Vol. 13, 137-142, 1996.
doi:10.1002/(SICI)1098-2760(19961020)13:3<137::AID-MOP7>3.0.CO;2-O

31. Kara, M., "An efficient technique for the computation of the input resistance of rectangular microstrip antenna elements with thick substrates," Microwave Opt. Technol. Lett., Vol. 13, 363-369, 1996.
doi:10.1002/(SICI)1098-2760(19961220)13:6<363::AID-MOP14>3.0.CO;2-4

32. Carver, K. R., "Practical analytical techniques for the microstrip antenna," Proceedings of Workshop on Printed Circuit Antenna Technology, Oct. 1979.

33. Chang, E., S. A. Long, and W. F. Richards, "An experimental investigation of electrically thick rectangular microstrip antennas," IEEE Trans. Antennas Propagat., Vol. 34, No. 6, 767-772, 1986.
doi:10.1109/TAP.1986.1143890

34. Kara, M., "The resonant frequency of rectangular microstrip antenna elements with various substrate thicknesses," Microw. Opt. Technol. Lett., Vol. 11, 55-59, 1996.
doi:10.1002/(SICI)1098-2760(19960205)11:2<55::AID-MOP1>3.0.CO;2-N

35. Kara, M., "Closed-form expressions for the resonant frequency of rectangular microstrip antenna elements with thick substrates," Microw. Opt. Technol. Lett., Vol. 12, 131-136, 1996.
doi:10.1002/(SICI)1098-2760(19960620)12:3<131::AID-MOP4>3.0.CO;2-I

36. Guney, K., "Radiation quality factor and resonant resistance of rectangular microstrip antennas," Microwave Opt. Technol. Lett., Vol. 7, 427-430, 1994.
doi:10.1002/mop.4650070915

37. Carver, K. R. and J. W. Mink, "Microstrip antenna technology," IEEE Trans. Antennas Propagat., Vol. 29, 2-24, 1981.
doi:10.1109/TAP.1981.1142523

38. Guney, K., "Bandwidth of a resonant rectangular microstrip antenna," Microwave Opt. Technol. Lett., Vol. 7, 521-524, 1994.
doi:10.1002/mop.4650071113

39. Howell, J. Q., "Microstrip antennas," IEEE Trans. Antennas Propagat., Vol. 23, 90-93, 1975.
doi:10.1109/TAP.1975.1141009

40. Hammerstad, E. O., "Equations for microstrip circuits design," Proceedings of Fifth European Microwave Conference, 268-272, Hamburg, Sept. 1975.

41. James, J. R., P. S. Hall, and C. Wood, Microstrip Antennas - Theory and Design, Peter Peregrinus Ltd., 1981.