Vol. 92

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-05-13

Miniaturized Multistubs Loaded Rectangular Monopole Antenna for Multiband Applications Based on Theory of Characteristics Modes

By Ashok Kumar, Jitendra Kumar Deegwal, and Mahendra Mohan Sharma
Progress In Electromagnetics Research C, Vol. 92, 177-189, 2019
doi:10.2528/PIERC19022009

Abstract

A miniaturized rectangular monopole antenna (RMA) integrated with a T-shaped stub, inverted long and short L-shaped stub resonators based on application of the theory of characteristic modes (CMs) is investigated for multiband operation. CMs of embedded multistubs resonators on the RMA are examined and perceived that the entire structure is able to excite magnetic and electric CMs, in which three valuable CMs at 2.69/3.68/5.35 GHz are attained to cover WiMAX and WLAN bands. Based on CM analysis, the design formulation of multistubs resonators loaded antenna is presented. The proposed multiband antenna has been fabricated, tested, and experimentally characterized. The measured fractional bandwidths (FBWs) are 7.03% (180 MHz, 2.47-2.65 GHz), 10.43% (360 MHz, 3.27-3.63 GHz), and 11.42% (630 MHz, 5.20-5.83 GHz). The antenna exhibits isolated multiple frequency bands, stable monopole-like radiation patterns, and flat realized gains over the operating resonance bands while maintaining the small antenna size.

Citation


Ashok Kumar, Jitendra Kumar Deegwal, and Mahendra Mohan Sharma, "Miniaturized Multistubs Loaded Rectangular Monopole Antenna for Multiband Applications Based on Theory of Characteristics Modes," Progress In Electromagnetics Research C, Vol. 92, 177-189, 2019.
doi:10.2528/PIERC19022009
http://www.jpier.org/PIERC/pier.php?paper=19022009

References


    1. Garbacz, R. J., "Modal expansions for resonance scattering phenomena," Proc. IEEE, Vol. 53, No. 8, 856-864, 1965.
    doi:10.1109/PROC.1965.4064

    2. Harrington, R. F. and J. R. Mautz, "The theory of characteristic modes for conducting bodies," IEEE Trans. Antennas Propag., Vol. 19, No. 5, 622-628, 1971.
    doi:10.1109/TAP.1971.1139999

    3. Harrington, R. F. and J. R. Mautz, "Computation of characteristic modes for conducting bodies," IEEE Trans. Antennas Propag., Vol. 19, No. 5, 629-639, 1971.
    doi:10.1109/TAP.1971.1139990

    4. Chen, Y. and C.-F. Wang, Characteristic Modes: Theory and Applications in Antenna Engineering, John Wiley & Sons, Inc., Hoboken, New Jersey, 2015.
    doi:10.1002/9781119038900

    5. Cabedo-Fabres, M., E. Antonino-Daviu, A. Valero-Nogueira, and M. F. Bataller, "The theory of characteristic modes revisited: A contribution to the design of antennas for modern applications," IEEE Antennas Propag. Mag., Vol. 49, No. 5, 52-68, 2007.
    doi:10.1109/MAP.2007.4395295

    6. Yang, X., Y. Liu, and S.-X. Gong, "Design of a wideband omnidirectional antenna with characteristic mode analysis," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 6, 993-997, 2018.
    doi:10.1109/LAWP.2018.2828883

    7. Zhao, X., S. P. Yeo, and L. C. Ong, "Planar UWB MIMO antenna with pattern diversity and isolation improvement for mobile platform based on the theory of characteristic modes," IEEE Trans. Antennas Propag., Vol. 66, No. 1, 420-425, 2018.
    doi:10.1109/TAP.2017.2768083

    8. Zhang, Q. and Y. Gao, "Compact low-profile UWB antenna with characteristic mode analysis for UHF TV white space devices," IET Microw. Antennas Propag., Vol. 11, No. 11, 1629-1635, 2017.
    doi:10.1049/iet-map.2016.0993

    9. Wu, W. and Y. P. Zhang, "Analysis of ultra-wideband printed planar quasi-monopole antennas using the theory of characteristic modes," IEEE Trans. Antennas Propag. Mag., Vol. 52, No. 6, 67-77, 2010.
    doi:10.1109/MAP.2010.5723225

    10. Tran, H. H., N. Nguyen-Trong, and A. M. Abbosh, "Simple design procedure of a broadband circularly polarized slot monopole antenna assisted by characteristic mode analysis," IEEE Access, Vol. 6, 78386-78396, 2018.
    doi:10.1109/ACCESS.2018.2885015

    11. Ghalib, A. and M. S. Sharawi, "New antenna mode generation based on theory of characteristic modes," Int. J. RF Microw. Comput. Aided Eng., e21686, 2018, doi: 10.1002/mmce.21686.
    doi:10.1002/mmce.21686

    12. Lu, W.-J. and L. Zhu, "Wideband stub-loaded slotline antennas under multi-mode resonance operation," IEEE Trans. Antennas Propag., Vol. 63, No. 2, 818-823, 2015.
    doi:10.1109/TAP.2014.2379921

    13. Zhang, X. Q., Y. C. Jiao, and W. H. Wang, "Compact wide tri-band slot antenna for WLAN/WiMAX applications," Electron. Lett., Vol. 48, No. 2, 64-65, 2012.
    doi:10.1049/el.2011.3376

    14. Rajabloo, H., V. A. Kooshki, and H. Oraizi, "Compact microstrip fractal Koch slot antenna with ELC coupling load for triple band application," Int. J. Electron. Commun., Vol. 73, 144-149, 2017.
    doi:10.1016/j.aeue.2016.12.027

    15. Li, W.-M., B. Liu, and H.-Y. Zhao, "Parallel rectangular open slots structure in multiband printed antenna design," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1161-1164, 2015.
    doi:10.1109/LAWP.2015.2393632

    16. Xu, Y., C. Zhang, Y.-Z. Yin, and Z. Yang, "Compact triple-band monopole antenna with inverted- L slots and SRR for WLAN/WiMAX applications," Progress In Electromagnetics Research Letters, Vol. 55, 1-6, 2015.
    doi:10.2528/PIERL15070904

    17. Liu, G., Y. Liu, and S. Gong, "Compact tri-band wide-slot monopole antenna with dual-ring resonator for WLAN/WiMAX applications," Microw. Opt. Technol. Lett., Vol. 58, No. 5, 1097-1101, 2016.
    doi:10.1002/mop.29759

    18. Liu, H.-W., F. Qin, J.-H. Lei, P. Wen, B.-P. Ren, and X. Xiao, "Dual-band microstrip-fed bow-tie antenna for GPS and WLAN application," Microw. Opt. Technol. Lett., Vol. 56, No. 9, 2088-2091, 2014.
    doi:10.1002/mop.28538

    19. Lu, J.-H. and W.-C. Chou, "Planar dual U-shaped monopole antenna with multiband operation for IEEE 802.16e," IEEE Antennas Wireless Propag. Lett., Vol. 9, 1006-1009, 2010.
    doi:10.1109/LAWP.2010.2087003

    20. Yang, X., Y.-Z. Yin, W. Hu, and K. Song, "Dual-band planar monopole antenna loaded with pair of edge resonators," Electron. Lett., Vol. 46, No. 21, 1419-1421, 2010.
    doi:10.1049/el.2010.8349

    21. He, K., R.-X. Wang, Y.-F. Wang, and B.-H. Sun, "Compact tri-band claw-shaped monopole antenna for WLAN/WiMAX applications," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 5–6, 869-877, 2011.
    doi:10.1163/156939311794827104

    22. Ellis, S. M., Z. Zhao, J. Wu, Z.-P. Nie, and Q. H. Liu, "A new compact microstrip-fed monopole antenna for triple band WLAN/WiMAX applications," Progress In Electromagnetics Research Letters, Vol. 48, 129-135, 2014.
    doi:10.2528/PIERL14061004

    23. Naik, K. K., "Asymmetric CPW-fed SRR patch antenna for WLAN/WiMAX applications," Int. J. Electron. Commun., Vol. 93, 103-108, 2018.
    doi:10.1016/j.aeue.2018.06.008

    24. Xu, Y., Y.-C. Jiao, and Y.-C. Luan, "Compact CPW-fed printed monopole antenna with tripleband characteristics for WLAN/WiMAX applications," Electron. Lett., Vol. 48, No. 24, 1519-1520, 2012.
    doi:10.1049/el.2012.3255

    25. Li, L., X. Zhang, X. Yin, and L. Zhou, "A compact triple-band printed monopole antenna for WLAN/WiMAX applications," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1853-1855, 2016.
    doi:10.1109/LAWP.2016.2539358

    26. Kumar, A., D. Jhanwar, and M. M. Sharma, "A compact printed multistubs loaded resonator rectangular monopole antenna design for multiband wireless systems," Int. J. RF Microw. Comput. Aided Eng., Vol. 27, No. 9, e21147, 2017.
    doi:10.1002/mmce.21147

    27. Liu, H. W., H. Jiang, X. Guan, J. H. Lei, and S. Li, "Single-feed slotted bowtie antenna for triband applications," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1658-1661, 2013.
    doi:10.1109/LAWP.2013.2294751

    28. Hu, W., Y.-Z. Yin, X. Yang, and P. Fei, "Compact multiresonator-loaded planar antenna for multiband operation," IEEE Trans. Antennas Propag., Vol. 61, No. 5, 2838-2841, 2013.
    doi:10.1109/TAP.2013.2242819

    29. Mao, C.-X., S. Gao, Y. Wang, and B. Sanz-Izquierdo, "A novel multiband directional antenna for wireless communications," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1217-1220, 2017.
    doi:10.1109/LAWP.2016.2628715

    30. Weng, W.-C. and C.-L. Hung, "An H-fractal antenna for multiband applications," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1705-1708, 2014.
    doi:10.1109/LAWP.2014.2351618

    31. Huang, H., Y. Liu, S. Zhang, and S. Gong, "Multiband metamaterial-loaded monopole antenna for WLAN/WiMAX applications," IEEE Antennas Wireless Propag. Lett., Vol. 14, 662-665, 2015.
    doi:10.1109/LAWP.2014.2376969

    32. Boukarkar, A., X. Q. Lin, Y. Jiang, and Y. Q. Yu, "Miniaturized single-feed multiband patch antennas," IEEE Trans. Antennas Propag., Vol. 65, No. 2, 850-854, 2017.
    doi:10.1109/TAP.2016.2632620

    33. Mark, R., N. Mishra, K. Mandal, P. P. Sarkar, and S. Das, "Hexagonal ring fractal antenna with dumb bell shaped defected ground structure for multiband wireless applications," Int. J. Electron. Commun., Vol. 94, 42-50, 2018.
    doi:10.1016/j.aeue.2018.06.039

    34. Kumar, A. and M. M. Sharma, "Compact triple-band stubs-loaded rectangular monopole antenna for WiMAX/WLAN applications," Optical and Wireless Technologies, Vol. 472, 429-435, Lecture Notes in Electrical Engineering, 2018.