Vol. 96
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-12-26
Application of Symplectic MRTD with CPML in Analysis of EMP Propagation in Tunnel
By
Progress In Electromagnetics Research C, Vol. 96, 165-177, 2019
Abstract
In this paper, the implementation of convolution perfectly matched layer (CPML) with good absorbing property is proposed for the symplectic multi-resolution time-domain (SMRTD) method, and a side-wall vault-top tunnel model is established by using the equidistant equation. The radian of the tunnel can be selected in the range of 0-π/2 according to actual needs. The absorbing performances of perfect matched layer (PML) and CPML are compared in the proposed tunnel model. In addition, based on the straight tunnel model and curved tunnel model with different radians, the characteristic of field cross-section distribution of electromagnetic pulse (EMP) propagation excited by TE10 mode is studied.
Citation
Guohui Li Yawen Liu , "Application of Symplectic MRTD with CPML in Analysis of EMP Propagation in Tunnel," Progress In Electromagnetics Research C, Vol. 96, 165-177, 2019.
doi:10.2528/PIERC19080703
http://www.jpier.org/PIERC/pier.php?paper=19080703
References

1. Taflove, A., Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Norwood, MA, 2005.

2. Biswas, B., K. Ahmed, B. K. Paul, Md. A. Khalek, and M. S. Uddin, "Numerical evaluation of the performance of different materials in nonlinear optical applications," Results in Physics, Vol. 13, 102184, 2019.
doi:10.1016/j.rinp.2019.102184

3. Ahmed, K., B. K. Paul, Md. A. Jabin, and B. Biswas, "FEM analysis of birefringence, dispersion and nonlinearity of graphene coated photonic crystal fiber," Ceramics International, Vol. 45, 15343-15347, 2019.
doi:10.1016/j.ceramint.2019.05.027

4. Paul, B. K., K. Ahmed, S. A. M. Matiur Rahman, M. Shanthi, D. Vigneswaran, and R. Zakaria, "Numerical analysis of a highly nonlinear microstructured optical fiber with air-holes arranged in spirals," Optical Fiber Technology, Vol. 51, 90-95, 2019.
doi:10.1016/j.yofte.2019.03.022

5. Krumpholz, M. and L. P. B. Katehi, "MRTD: New time-domain schemes based on multiresolution analysis," IEEE Trans. Microwave Theory Tech., Vol. 44, 555-561, Apr. 1996.
doi:10.1109/22.491023

6. Chen, Z. and J. Zhang, "An unconditionally stable 3-D ADI-MRTD method free of the CFL stability condition," IEEE Microwave and Wireless Components Letters, Vol. 11, 349-351, 2001.
doi:10.1109/7260.941786

7. Hirono, T., W. Lui, S. Seki, and Y. Yoshikuni, "A three-dimensional fourth-order finite-difference time-domain scheme using a symplectic integrator propagator," IEEE Trans. Microwave Theory Tech., Vol. 49, 1640-1648, 2001.
doi:10.1109/22.942578

8. Huang, Z., W. Sha, X. Wu, and M. Chen, "A novel high-order time-domain scheme for three-dimensional Maxwell's equations," Microwave and Optical Technology Letters, Vol. 48, 1123-1125, 2006.
doi:10.1002/mop.21563

9. Gao, Y. J., H. W. Yang, and G. B. Wang, "A research on the electromagnetic properties of plasma photonic crystal based on the symplectic finite-difference time-domain method," Optik — International Journal for Light and Electron Optics, Vol. 127, 1838-1841, 2016.
doi:10.1016/j.ijleo.2015.11.089

10. He, Z. F., S. Liu, S. Chen, and S. Y. Zhong, "Application of symplectic finite-difference time-domain scheme for anisotropic magnetised plasma," IET Microwaves, Antennas & Propagation, Vol. 11, 600-606, 2017.
doi:10.1049/iet-map.2016.0570

11. Kuang, X., Z. Huang, M. Chen, and X. Wu, "High-order symplectic compact finite-different time-domain algorithm for guide-wave structures," IEEE Microwave and Wireless Components Letters, Vol. 29, 80-82, 2019.
doi:10.1109/LMWC.2019.2891109

12. Sha, W. E. I., X.-L. Wu, Z.-X. Huang, and M.-S. Chen, "Waveguide simulation using the high-order symplectic finite-difference time-domain scheme," Progress In Electromagnetics Research B, Vol. 13, 237-256, 2009.
doi:10.2528/PIERB09012302

13. Wei, M., Z. X. Huang, B. Wu, X. Wu, and H. Wang, "A novel symplectic multi-resolution time-domain scheme for electromagnetic simulations," IEEE Microwave and Wireless Components Letters, Vol. 23, 175-177, 2013.
doi:10.1109/LMWC.2013.2247990

14. Roden, J. and S. Gedney, "Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microwave and Optical Technology Letters, Vol. 27, 334-339, 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A

15. Liu, Y., P. Zhang, and Y.-W. Chen, "Implementation of the parallel higher-order FDTD with convolution PML," Progress In Electromagnetics Research Letters, Vol. 70, 129-138, 2017.
doi:10.2528/PIERL17082203

16. Berenger, J., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, 185-200, 1994.
doi:10.1006/jcph.1994.1159

17. Luebbers, R., F. Huusberger, K. Kunz, R. Standler, and M. Schneider, "A frequency-dependent finite-difference time-domain formulation for dispersive materials," IEEE Transactions on Electromagnetic Compatibility, Vol. 32, 222-227, 1990.
doi:10.1109/15.57116

18. Liu, Y., Y.-W. Chen, P. Zhang, and X. Xu, "Implementation and application of the spherical MRTD algorithm," Progress In Electromagnetics Research, Vol. 139, 577-597, 2013.
doi:10.2528/PIER13040103

19. Yu, W. and R. Mittra, "A conformal finite difference time domain technique for modeling curved dielectric surfaces," IEEE Microwave and Wireless Components Letters, Vol. 11, 25-27, 2002.

20. Berenger, J., "An effective PML for the absorption of evanescent waves in waveguides," IEEE Microwave and Guided Wave Letters, Vol. 8, 188-190, 1998.
doi:10.1109/75.668706