Vol. 96

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-12-26

Application of Symplectic MRTD with CPML in Analysis of EMP Propagation in Tunnel

By Guohui Li and Yawen Liu
Progress In Electromagnetics Research C, Vol. 96, 165-177, 2019
doi:10.2528/PIERC19080703

Abstract

In this paper, the implementation of convolution perfectly matched layer (CPML) with good absorbing property is proposed for the symplectic multi-resolution time-domain (SMRTD) method, and a side-wall vault-top tunnel model is established by using the equidistant equation. The radian of the tunnel can be selected in the range of 0-π/2 according to actual needs. The absorbing performances of perfect matched layer (PML) and CPML are compared in the proposed tunnel model. In addition, based on the straight tunnel model and curved tunnel model with different radians, the characteristic of field cross-section distribution of electromagnetic pulse (EMP) propagation excited by TE10 mode is studied.

Citation


Guohui Li and Yawen Liu, "Application of Symplectic MRTD with CPML in Analysis of EMP Propagation in Tunnel," Progress In Electromagnetics Research C, Vol. 96, 165-177, 2019.
doi:10.2528/PIERC19080703
http://www.jpier.org/PIERC/pier.php?paper=19080703

References


    1. Taflove, A., Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Norwood, MA, 2005.

    2. Biswas, B., K. Ahmed, B. K. Paul, Md. A. Khalek, and M. S. Uddin, "Numerical evaluation of the performance of different materials in nonlinear optical applications," Results in Physics, Vol. 13, 102184, 2019.
    doi:10.1016/j.rinp.2019.102184

    3. Ahmed, K., B. K. Paul, Md. A. Jabin, and B. Biswas, "FEM analysis of birefringence, dispersion and nonlinearity of graphene coated photonic crystal fiber," Ceramics International, Vol. 45, 15343-15347, 2019.
    doi:10.1016/j.ceramint.2019.05.027

    4. Paul, B. K., K. Ahmed, S. A. M. Matiur Rahman, M. Shanthi, D. Vigneswaran, and R. Zakaria, "Numerical analysis of a highly nonlinear microstructured optical fiber with air-holes arranged in spirals," Optical Fiber Technology, Vol. 51, 90-95, 2019.
    doi:10.1016/j.yofte.2019.03.022

    5. Krumpholz, M. and L. P. B. Katehi, "MRTD: New time-domain schemes based on multiresolution analysis," IEEE Trans. Microwave Theory Tech., Vol. 44, 555-561, Apr. 1996.
    doi:10.1109/22.491023

    6. Chen, Z. and J. Zhang, "An unconditionally stable 3-D ADI-MRTD method free of the CFL stability condition," IEEE Microwave and Wireless Components Letters, Vol. 11, 349-351, 2001.
    doi:10.1109/7260.941786

    7. Hirono, T., W. Lui, S. Seki, and Y. Yoshikuni, "A three-dimensional fourth-order finite-difference time-domain scheme using a symplectic integrator propagator," IEEE Trans. Microwave Theory Tech., Vol. 49, 1640-1648, 2001.
    doi:10.1109/22.942578

    8. Huang, Z., W. Sha, X. Wu, and M. Chen, "A novel high-order time-domain scheme for three-dimensional Maxwell's equations," Microwave and Optical Technology Letters, Vol. 48, 1123-1125, 2006.
    doi:10.1002/mop.21563

    9. Gao, Y. J., H. W. Yang, and G. B. Wang, "A research on the electromagnetic properties of plasma photonic crystal based on the symplectic finite-difference time-domain method," Optik — International Journal for Light and Electron Optics, Vol. 127, 1838-1841, 2016.
    doi:10.1016/j.ijleo.2015.11.089

    10. He, Z. F., S. Liu, S. Chen, and S. Y. Zhong, "Application of symplectic finite-difference time-domain scheme for anisotropic magnetised plasma," IET Microwaves, Antennas & Propagation, Vol. 11, 600-606, 2017.
    doi:10.1049/iet-map.2016.0570

    11. Kuang, X., Z. Huang, M. Chen, and X. Wu, "High-order symplectic compact finite-different time-domain algorithm for guide-wave structures," IEEE Microwave and Wireless Components Letters, Vol. 29, 80-82, 2019.
    doi:10.1109/LMWC.2019.2891109

    12. Sha, W. E. I., X.-L. Wu, Z.-X. Huang, and M.-S. Chen, "Waveguide simulation using the high-order symplectic finite-difference time-domain scheme," Progress In Electromagnetics Research B, Vol. 13, 237-256, 2009.
    doi:10.2528/PIERB09012302

    13. Wei, M., Z. X. Huang, B. Wu, X. Wu, and H. Wang, "A novel symplectic multi-resolution time-domain scheme for electromagnetic simulations," IEEE Microwave and Wireless Components Letters, Vol. 23, 175-177, 2013.
    doi:10.1109/LMWC.2013.2247990

    14. Roden, J. and S. Gedney, "Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microwave and Optical Technology Letters, Vol. 27, 334-339, 2000.
    doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A

    15. Liu, Y., P. Zhang, and Y.-W. Chen, "Implementation of the parallel higher-order FDTD with convolution PML," Progress In Electromagnetics Research Letters, Vol. 70, 129-138, 2017.
    doi:10.2528/PIERL17082203

    16. Berenger, J., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, 185-200, 1994.
    doi:10.1006/jcph.1994.1159

    17. Luebbers, R., F. Huusberger, K. Kunz, R. Standler, and M. Schneider, "A frequency-dependent finite-difference time-domain formulation for dispersive materials," IEEE Transactions on Electromagnetic Compatibility, Vol. 32, 222-227, 1990.
    doi:10.1109/15.57116

    18. Liu, Y., Y.-W. Chen, P. Zhang, and X. Xu, "Implementation and application of the spherical MRTD algorithm," Progress In Electromagnetics Research, Vol. 139, 577-597, 2013.
    doi:10.2528/PIER13040103

    19. Yu, W. and R. Mittra, "A conformal finite difference time domain technique for modeling curved dielectric surfaces," IEEE Microwave and Wireless Components Letters, Vol. 11, 25-27, 2002.

    20. Berenger, J., "An effective PML for the absorption of evanescent waves in waveguides," IEEE Microwave and Guided Wave Letters, Vol. 8, 188-190, 1998.
    doi:10.1109/75.668706