Vol. 108

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-01-11

Fully Metallic Dual-Band 3-D Wire Antenna for Wi-Fi and Wi-MAX Applications

By Fateh Benmahmoud, Pierre Lemaitre-Auger, and Smail Tedjini
Progress In Electromagnetics Research C, Vol. 108, 147-158, 2021
doi:10.2528/PIERC20111602

Abstract

A segmented three-dimensional wire monopole antenna is proposed and optimized to operate in both the Wi-Fi and Wi-Max frequency bands (2.4-2.48 and 3.3-3.7 GHz). The fabrication of the antenna employs both three dimension printing and foundry techniques. The design occupies a total volume of 33.8 mm × 30.4 mm × 37.4 mm, which is equivalent to 0.28λ0 × 0.25λ0 × 0.30λ0, where λ0 is the central wavelength of the lower band. The measurements agree with the simulations and show that the antenna has a -10 dB impedance bandwidth of 7.53% (2.36 to 2.55 GHz) and 53.87% (2.78 to 4.43 GHz) and a measured -3 dB axial ratio bandwidth of 19.06% (3.18 to 3.85 GHz) for the second band. For the first band, simulations indicate that the polarization is elliptical. The radiation pattern is a near hemispherical coverage toward the upper hemisphere. The measured maximum gain values are 5.6 and 7.3 dB for the lower and upper bands, respectively. The simulated radiation efficiency is higher than 98%.

Citation


Fateh Benmahmoud, Pierre Lemaitre-Auger, and Smail Tedjini, "Fully Metallic Dual-Band 3-D Wire Antenna for Wi-Fi and Wi-MAX Applications," Progress In Electromagnetics Research C, Vol. 108, 147-158, 2021.
doi:10.2528/PIERC20111602
http://www.jpier.org/PIERC/pier.php?paper=20111602

References


    1. Feng, B., et al., "HetNet: A flexible architecture for heterogeneous satellite-terrestrial networks," IEEE Netw., Vol. 31, No. 6, 86-92, 2017.
    doi:10.1109/MNET.2017.1600330

    2. Sarma, A., S. Chakraborty, and S. Nandi, "Deciding handover points based on context-aware load balancing in a WiFi-WiMAX heterogeneous network environment," IEEE Trans. Veh. Technol., Vol. 65, No. 1, 348-357, 2016.
    doi:10.1109/TVT.2015.2394371

    3. Meier, R. C., K. Dettloff, and J. G. Waclawsky, System and method for integrated WiFi/WiMax neighbor AP discovery and AP advertisement, Google Patents, Feb. 12, 2013.

    4. Wang, W., X. Liu, J. Vicente, and P. Mohapatra, "Integration gain of heterogeneous WiFi/WiMAX networks," IEEE Trans. Mob. Comput., Vol. 10, No. 8, 1131-1143, 2011.
    doi:10.1109/TMC.2010.232

    5. Lin, H., Y. Lin, W. Chang, and R. Cheng, "An integrated WiMAX/WiFi architecture with QoS consistency over broadband wireless networks," 6th IEEE Consumer Communications and Networking Conference, 1-7, 2009.

    6. Niyato, D. and E. Hossain, "Wireless broadband access: WIMAX and beyond — Integration of WiMAX and WiFi: Optimal pricing for bandwidth sharing," IEEE Commun. Mag., Vol. 45, No. 5, 140-146, 2007.
    doi:10.1109/MCOM.2007.358861

    7. Haghighi, M., Z. Qin, D. Carboni, U. Adeel, F. Shi, and J. A. McCann, "Game theoretic and auction-based algorithms towards opportunistic communications in LPWA LoRa networks," IEEE 3rd World Forum on Internet of Things (WF-IoT), 735-740, 2016.

    8. Pasolini, G., et al., "Smart city pilot projects using LoRa and IEEE802.15.4 technologies," Sensors, Vol. 18, No. 4, 1118, 2018.
    doi:10.3390/s18041118

    9. Lian, L. and L. Li, "Wireless dimming system for LED street lamp based on ZigBee and GPRS," 3rd International Conference on System Science, Engineering Design and Manufacturing Informatization, Vol. 2, 100-102, 2012.

    10. Counselman, C. C., "Multipath-rejecting GPS antennas," Proc. IEEE, Vol. 87, No. 1, 86-91, 1999.
    doi:10.1109/5.736343

    11. Chen, K., J. Yuan, and X. Luo, "Compact dual-band dual circularly polarised annular-ring patch antenna for BeiDou navigation satellite system application," IET Microwaves, Antennas Propag., Vol. 11, No. 8, 1079-1085, 2017.
    doi:10.1049/iet-map.2016.1057

    12. Wang, Z., R. She, J. Han, S. Fang, and Y. Liu, "Dual-band dual-sense circularly polarized stacked patch antenna with a small frequency ratio for UHF RFID reader applications," IEEE Access, Vol. 5, 15260-15270, 2017.
    doi:10.1109/ACCESS.2017.2733625

    13. Wang, S., L. Zhu, and W. Wu, "3-D printed inhomogeneous substrate and superstrate for application in dual-band and dual-CP stacked patch antenna," IEEE Trans. Antennas Propag., Vol. 66, No. 5, 2236-2244, 2018.
    doi:10.1109/TAP.2018.2810330

    14. Yue, T., Z. H. Jiang, and D. H. Werner, "A compact metasurface-enabled dual-band dual-circularly polarized antenna loaded with complementary split ring resonators," IEEE Trans. Antennas Propag., Vol. 67, No. 2, 794-803, 2019.
    doi:10.1109/TAP.2018.2882616

    15. Li, K., L. Li, Y. M. Cai, C. Zhu, and C. H. Liang, "A novel design of low-profile dual-band circularly polarized antenna with meta-surface," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 1650-1653, 2015.
    doi:10.1109/LAWP.2015.2417169

    16. Liang, Z., D. Yang, X. Wei, and E. Li, "Dual-band dual circularly polarized microstrip antenna with two eccentric rings and an arc-shaped conducting strip," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 834-837, 2016.
    doi:10.1109/LAWP.2015.2476505

    17. Kumar, K. and S. Dwari, "Dual-band dual-sense circularly polarized substrate integrated waveguide antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 3, 521-524, 2018.
    doi:10.1109/LAWP.2018.2800295

    18. Tao, J. and Q. Feng, "Dual-band magnetoelectric dipole antenna with dual-sense circularly polarized character," IEEE Trans. Antennas Propag., Vol. 65, No. 11, 5677-5685, 2017.
    doi:10.1109/TAP.2017.2748282

    19. Le, T. T. and H. H. Tran, "Dual-band dual-sense circularly polarized antenna based on crossed dipole structure for WLAN/WiMAX applications," Int. J. RF Microw. Comput. Eng., Vol. 29, No. 10, e21866, 2019.

    20. Altshuler, E. E. and D. S. Linden, "Wire-antenna designs using genetic algorithms," IEEE Antennas Propag. Mag., Vol. 39, No. 2, 33-43, 1997.
    doi:10.1109/74.584498

    21. Best, S. R., "A discussion on the significance of geometry in determining the resonant behavior of fractal and other non-Euclidean wire antennas," IEEE Antennas Propag. Mag., Vol. 45, No. 3, 9-28, 2003.
    doi:10.1109/MAP.2003.1232160

    22. Best, S. R., "A discussion on the quality factor of impedance matched electrically small wire antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 502-508, 2005.
    doi:10.1109/TAP.2004.837107

    23. Caswell, D. J. and G. B. Lamont, "Wire-antenna geometry design with multiobjective genetic algorithms," Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, 2002.

    24. Altshuler, E. E. and T. H. O’Donnell, "An electrically small multi-frequency genetic antenna immersed in a dielectric powder," IEEE Antennas Propag. Mag., Vol. 53, No. 5, 33-40, 2011.
    doi:10.1109/MAP.2011.6138425

    25. Altshuler, E. E., "Electrically small self-resonant wire antennas optimized using a genetic algorithm," IEEE Antennas Propag. Mag., Vol. 50, No. 3, 297-300, 2002.
    doi:10.1109/8.999619

    26. Altshuler, E. E. and D. S. Linden, "An electrically small genetic antenna immersed in a dielectric," IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), 2007.
    doi:10.1109/8.999619

    27. Benmahmoud, F., P. Lemaitre-Auger, and S. Tedjini, "Design of electrically small 3-D wire antennas for UHF RFID applications using genetic algorithm," XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), 1-4, 2017.

    28. Choo, H., R. L. Rogers, and H. Ling, "Design of electrically small wire antennas using a pareto genetic algorithm," IEEE Trans. Antennas Propag., Vol. 53, No. 3, 1038-1046, 2005.
    doi:10.1109/TAP.2004.842404

    29. Altshuler, E. E. and D. S. Linden, "An ultrawide-band impedance-loaded genetic antenna," IEEE Trans. Antennas Propag., Vol. 52, No. 11, 3147-3151, 2004.
    doi:10.1109/TAP.2004.834468

    30. Rengarajan, S. R. and Y. Rahmat-Samii, "On the cross-polarization characteristics of crooked wire antennas designed by genetic-algorithms," IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), 2002.

    31. Lohn, J. D., D. S. Linden, G. S. Hornby, and W. F. Kraus, "Evolutionary design of an X-band antenna for NASA’s space technology 5 mission," IEEE Antennas and Propagation Society Symposium, Vol. 3, No. 11, 2313-2316, 2004.
    doi:10.1109/APS.2004.1331834

    32. Lohn, J. D., G. S. Hornby, and D. S. Linden, "Rapid re-evolution of an X-band antenna for NASA’s space technology 5 mission," Genetic Programming Theory and Practice III, 65-78, Springer, US, 2006.
    doi:10.1007/0-387-28111-8_5

    33. Hornby, G., A. Globus, D. Linden, and J. Lohn, "Automated antenna design with evolutionary algorithms," Space, Vol. 5, 1-8, 2006.

    34. Lohn, J. D., G. S. Hornby, and D. S. Linden, "Human-competitive evolved antennas," Artif. Intell. Eng. Des. Anal. Manuf. AIEDAM, Vol. 22, No. 3, 235-247, 2008.
    doi:10.1017/S0890060408000164

    35. Hornby, G. S., J. D. Lohn, and D. S. Linden, "Computer-automated evolution of an X-band antenna for NASA’s space technology 5 mission," Artif. Intell. Eng. Des. Anal. Manuf. AIEDAM, Vol. 19, No. 1, 1-23, 2010.

    36. Lohn, J. D., D. S. Linden, B. Blevins, T. Greenling, and M. R. Allard, "Automated synthesis of a lunar satellite antenna system," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1436-1444, 2015.
    doi:10.1109/TAP.2015.2404332

    37. Coello Coello, C. A., G. B. Lamont, and D. A. Van Veldhuizen, Evolutionary Algorithms for Solving Multi-objective Problems, Springer, New York, 2007.

    38. Linden, D. S., "Using a real chromosome in a genetic algorithm for wire antenna optimization," IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), 1997.

    39. Jin, N. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations," IEEE Trans. Antennas Propag., Vol. 55, No. 3, 556-567, 2007.
    doi:10.1109/TAP.2007.891552

    40. Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Trans. Evol. Comput., Vol. 6, No. 2, 182-197, 2002.
    doi:10.1109/4235.996017

    41. Baumgartner, U., C. Magele, K. Preis, and W. Renhart, "Particle swarm optimisation for Pareto optimal solutions in electromagnetic shape design," IEE Proc. Sci. Meas. Technol., Vol. 40, No. 2, 1172-1175, 2004.

    42. Wu, J.-W., J.-Y. Ke, C. F. Jou, and C.-J. Wang, "Microstrip-fed broadband circularly polarised monopole antenna," IET Microwaves, Antennas Propag., Vol. 4, No. 4, 518-525, 2010.
    doi:10.1049/iet-map.2008.0400

    43. Toh, B. Y., R. Cahill, and V. F. Fusco, "Understanding and measuring circular polarization," IEEE Trans. Educ., Vol. 46, No. 3, 313-318, 2003.
    doi:10.1109/TE.2003.813519

    44. Le, T. T. and H. H. Tran, "Dual-band dual-sense circularly polarized antenna based on crossed dipole structure for WLAN/WiMAX applications," Int. J. RF Microw. Comput. Eng., Vol. 29, No. 10, 2019.