1. Jimenez, H., C. Blackman, G. Lesser, et al. "Use of non-ionizing electromagnetic fields for the treatment of cancer," History of Radiofrequency Electromagnetic Fields (RF EMF), Front Biosci. (Landmark Ed.), Vol. 23, 284-297, 2018.
doi:10.2741/4591 Google Scholar
2. Mattsson, M. O. and M. Simko, "Emerging medical applications based on non-ionizing electromagnetic fields from 0 Hz to 10 THz," Review, Vol. 2019, No. 12, 347-368, 2019. Google Scholar
3. Betskii, O. V., S. V. Savelev, and L. A. Morozova, "Millimeter and terahertz waves in solution of pharmacological agents of biological origin," Biomedical Radioelectronics, Vol. 4, 42-46, 2017. Google Scholar
4. Kalantaryan, V. P., P. O. Vardevanyan, Y. S. Babayan, E. S. Gevorgyan, S. N. Hakobyan, and A. P. Antonyan, "Influence of low intensity coherent Electromagnetic Millimeter Radiation (EMR) on AQUA solution of DNA," Progress In Electromagnetics Research Letters, Vol. 13, 1-9, 2010.
doi:10.2528/PIERL09110605 Google Scholar
5. Tadevosyan, H. H., V. P. Kalantaryan, and A. H. Trchounian, "Extremely high frequency electromagnetic radiation enforces bacterial effects of inhibitors and antiobiotics," Cell Biochemestry & Biophysics, Vol. 51, No. 2–3, 97-103, Jul. 2008. Google Scholar
6. Hakobyan, S. N., M. A. Shahinyan, and Yu. S. Babayan, "Stability of irradiated DNA complexes from sarcoma 45 tumors with mitoxantrone at small fillings," Biophys. Review and Letters, Vol. 11, No. 4, 139-147, 2016.
doi:10.1142/S1793048016500028 Google Scholar
7. Vardevanyan, P. O., A. P. Antonyan, M. A. Shahinyan, and M. S. Mikaelyan, "Influence of millimeter electromagnetic waves on fluorescence of water-saline solutions of Human Serum Albumin," J. of Applied Spectroscopy, Vol. 83, No. 3, 496-499, 2016.
doi:10.1007/s10812-016-0316-z Google Scholar
8. Shenberg, A. S., M. G. Uzbekov, S. N. Shihov, A. S. Bazyan, and G. M. Chernyako, "Some neyrotrop effects of low intensity electromagnetic waves on the rats with different typological pecularities of the highest neural activity," Journal of the Highest Neural Activity, Vol. 50, 867-877, 2000. Google Scholar
9. Minasyan, S. M., G. Y. Grigoryan, S. G. Saakyan, A. A. Akhumyan, and V. P. Kalantaryan, "Effects of the action of microwave-frequency electromagnetic radiation on the spike activity of neurons in the supraoptic nucleus of the Hypothalamus in rats," Neuroscience and Behavioral Physiology, Vol. 37, No. 2, 175-180, 2007.
doi:10.1007/s11055-007-0165-6 Google Scholar
10. Kalantaryan, V., R. Martirosyan, Yu. Babayan, and P. Vardevanyan, "Influence of nonionizing millimeter electromagnetic radiation on tumor and healthy DNA," Physica Medica, Vol. 52, suppl. 1, 1-2, 2018. Google Scholar
11. Kalantaryan, V. P., S. N. Hakobyan, and P. O. Vardevanyan, "Effect of weak electromagnetic waves on thermal properties of biomolecule water solutions," J. of Contemporary Physics, Vol. 53, No. 2, 231-235, 2018.
doi:10.3103/S106833721802010X Google Scholar
12. Hakobyan, S. N., V. P. Kalantaryan, and Yu. S. Babayan, "Effect of non-thermal millimeter electromagnetic radiation on thermodynamic parameters of the binding of ligands with DNA," Biol. J. Armenia, Vol. 70, No. 1, 22-27, 2018. Google Scholar
13. Logani, M. K., I. Szabo, V. R. Makar, A. Bhanushali, S. I. Alekseev, and M. C. Ziskin, "Effect of millimeter wave irradiation on tumor metastasis," Bioelectromagnetics, Vol. 27, 258-264, 2006.
doi:10.1002/bem.20208 Google Scholar
14. Barbault, A., F. Costa, B. Bottger, R. Munden, F. Bomholt, N. Kuster, et al. "Amplitude-modulated electromagnetic fields for the treatment of cancer: Discovery of tumor-specific frequencies and assessment of a novel therapeutic approach," J. Exp. Clin. Cancer Res., Vol. 28, No. 1, 51-60, Apr. 2009.
doi:10.1186/1756-9966-28-51 Google Scholar
15. Costa, F. P., A. C. de Oliveira, R. Meirelles, M. C. Machado, T. Zanesco, R. Surjan, et al. "Treatment of advanced hepatocellular carcinoma with very low levels of amplitude-modulated electromagnetic fields," Br. J. Cancer, Vol. 105, No. 5, 640-648, Aug. 2011.
doi:10.1038/bjc.2011.292 Google Scholar
16. Zimmerman, J. W., M. J. Pennison, I. Brezovich, N. Yi, C. T. Yang, R. Ramaker, et al. "Cancer cell proliferation is inhibited by specific modulation frequencies," Br. J. Cancer, Vol. 106, No. 2, 307-313, Jan. 2012.
doi:10.1038/bjc.2011.523 Google Scholar
17. Makar, V. R., M. K. Logani, A. Bhanushali, S. I. Alekseev, and M. C. Ziskin, "Effect of cyclophosphamide and 61.22 GHz millimeter waves on T-cell, B-cell,and macrophage functions," Bioelectromagnetics, Vol. 27, 458-466, 2006.
doi:10.1002/bem.20230 Google Scholar
18. Logani, M. K., A. Bhanushali, A. Anga, A. Majmundar, I. Szabo, and M. C. Ziskin, "Combined millimeter wave and cyclophosphamide therapy of an experimental murine melanoma," Bioelectromagnetics, Vol. 25, 516-523, 2004.
doi:10.1002/bem.20026 Google Scholar
19. Caravalho, C., R. X. Santos, and S. Cardoso, "Doxorubicin: The good, the bad and the ugly effect," Current Medicinal Chemistry, Vol. 16, No. 25, 3267-3285, 2009.
doi:10.2174/092986709788803312 Google Scholar
20. Airodi, M., G. Bazone, G. Gennaro, A. M. Giuliani, and M. Giustini, "Interaction of Doxorubicin with polynucleotides. A spectroscopic study," Biochemistry, Vol. 53, 2197-2207, 2014.
doi:10.1021/bi401687v Google Scholar
21. Perez-Arnaiz, C., N. Busto, J. M. Leal, and B. Garcia, "New insights into the mechanism of the DNA/Doxorubicin interaction," J. Phys. Chem. B, Vol. 118, No. 5, 1288-1295, 2014.
doi:10.1021/jp411429g Google Scholar
22. Jawad, B., L. Pouldel, R. Polgornik, N. F. Steinmetz, and W. Ching, "Molecular mechanism and binding free energy of doxorubicin interaction in DNA," Phys. Chem. Chem. Phys., Vol. 21, 3877-3893, 2019.
doi:10.1039/C8CP06776G Google Scholar
23. Tartakoff, S. S., J. M. Finan, E. J. Curtis, H. M. Anchukaitis, D. J. Couture, and S. Glazier, "Investigation into DNA-binding mode of doxorubicin," Organic Biomolecular Chemistry, Vol. 17, 1992-1998, 2019.
doi:10.1039/C8OB02344A Google Scholar
24. Gharibyan, J. V., L. E. Nersesyan, and Yu. S. Babayan, "Combined influence of millimeter waves with antitumor drug doxorubicin on structure of tumor DNA," Science-medical J., Vol. 3, 28-33, 2006. Google Scholar
25. Partha, M. D. and S. Rakesh, "DNA methylation and cancer," J. Clinical Oncology, Vol. 22, No. 22, 4632-4642, 2004.
doi:10.1200/JCO.2004.07.151 Google Scholar
26. Kalantaryan, V., R. Martirosyan, L. Nersesyan, A. Aharonyan, I. Danielyan, H. Stepanyan, J. Gharibyan, and N. Khudaverdyan, "Effect on tumoral cells of low intensity electromagnetic waves," Progress In Electromagnetics Research Letters, Vol. 20, 98-105, 2011. Google Scholar
27. Babayan, Yu. S. and J. V. Gharibyan, "Structural peculiarities of tumor DNA of sarcoma 45," Biofizica, Vol. 35, No. 4, 592-596, 1990. Google Scholar
28. Babayan, Yu. S., V. P. Kalantaryan, R. S. Ghazaryan, M. A. Parsadanyan, and P. O. Vardevanyan, "The influence of low energy millimeter electromagnetic waves on the stability of DNA molecules in solution," Biofizica, Vol. 52, No. 2, 382-384, 2007. Google Scholar
29. Rodionov, B. N., "Energo-informational effect of low-energetic electromagnetic radiations on biological objects," New Medical Technologies Report, Vol. 6, No. 3-4, 24-29, 1999. Google Scholar
30. Babayan, Yu. S., A. A. Tadevosyan, G. L. Kanaryan, V. P. Kalantaryan, and P. O. Vardevanyan, "The influence of coherent electromagnetic waves of millimeter range on the properties of the DNA solutions," Biomedicine Radioengineering, Vol. 2, 52-57, 2009. Google Scholar
31. Parker, B. S., A. Rephaeli, A. Nudelman, D. K. Phillips, and S. M. Cutts, "Formation of mitoxantrone adducts in human tumor cells: Potentiation by AN-9 and DNA methylation," Oncology Research, Vol. 14, No. 6, 279-290, 2009.
doi:10.3727/096504003773994815 Google Scholar
32. Mc Ghee, J. D. and P. H. von Hippel, "Theoretical aspects of DNA-protein interactions: Cooperative and non-cooperative binding of large ligands to one dimensional homogeneous lattice," J. Mol. Biol., Vol. 84, No. 3, 469-489, 1974.
doi:10.1016/0022-2836(74)90031-X Google Scholar