Vol. 91
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-05-15
On the Possibility of Using Non-Ionizing Electromagnetic Radiation (Millimeter Waves) in Oncology
By
Progress In Electromagnetics Research Letters, Vol. 91, 49-57, 2020
Abstract
A study on the use of non-ionizing and non-thermal millimeter electromagnetic radiation in tumor chemotherapy was conducted. DNA released from sarcoma 45 tumor (tDNA) and healthy rats (hDNA) in water-saline solution was irradiated during 90 min by frequencies at both resonates for oscillations of water molecular structures (at 64.5 GHz and 50.3 GHz) and non-resonance (48.3 GHz). Non-irradiated and irradiated tDNA and hDNA binding constants with anti-tumorous drugs doxorubicin (DX) and netropsin (NT) were studied. The absorption spectra of non-irradiated and irradiated complexes of DNA with DX and NT were obtained by spectroscopic method. From the absorption spectra, binding constants at 290 K, 300 K, and 310 K temperatures have been determined. According to our calculations doxorubicin and netropsin with irradiated DNA form were more stable complexes and much stronger with tDNA irradiated at resonant frequencies: it was observed doxorubicin and netropsin binding selectivity to irradiated tDNA in-vitro experiments. For a DNA irradiation at resonant frequencies of 64.5 GHz and 50.3 GHz the binding constant K to DX and to NT is almost an order of magnitude higher than for the non-irradiated DNA. The obtained data suggest that the irradiation of malignant tumors by non-thermal (ultra-weak intensity) millimeter electromagnetic waves in combination with anticancer drugs may be promising for clinical oncology. The same antitumor effect can be achieved at much lower doses of medicines (considerable dose reduction). This is essential from the point of view of the application of gentle therapies for patients and the reduction of expenses associated with acquisition of expensive medicines.
Citation
Vitaly P. Kalantaryan, Radik Martirosyan, Yura Babayan, and Ruzanna Khazaryan, "On the Possibility of Using Non-Ionizing Electromagnetic Radiation (Millimeter Waves) in Oncology," Progress In Electromagnetics Research Letters, Vol. 91, 49-57, 2020.
doi:10.2528/PIERL20020301
References

1. Jimenez, H., C. Blackman, G. Lesser, et al. "Use of non-ionizing electromagnetic fields for the treatment of cancer," History of Radiofrequency Electromagnetic Fields (RF EMF), Front Biosci. (Landmark Ed.), Vol. 23, 284-297, 2018.
doi:10.2741/4591

2. Mattsson, M. O. and M. Simko, "Emerging medical applications based on non-ionizing electromagnetic fields from 0 Hz to 10 THz," Review, Vol. 2019, No. 12, 347-368, 2019.

3. Betskii, O. V., S. V. Savelev, and L. A. Morozova, "Millimeter and terahertz waves in solution of pharmacological agents of biological origin," Biomedical Radioelectronics, Vol. 4, 42-46, 2017.

4. Kalantaryan, V. P., P. O. Vardevanyan, Y. S. Babayan, E. S. Gevorgyan, S. N. Hakobyan, and A. P. Antonyan, "Influence of low intensity coherent Electromagnetic Millimeter Radiation (EMR) on AQUA solution of DNA," Progress In Electromagnetics Research Letters, Vol. 13, 1-9, 2010.
doi:10.2528/PIERL09110605

5. Tadevosyan, H. H., V. P. Kalantaryan, and A. H. Trchounian, "Extremely high frequency electromagnetic radiation enforces bacterial effects of inhibitors and antiobiotics," Cell Biochemestry & Biophysics, Vol. 51, No. 2–3, 97-103, Jul. 2008.

6. Hakobyan, S. N., M. A. Shahinyan, and Yu. S. Babayan, "Stability of irradiated DNA complexes from sarcoma 45 tumors with mitoxantrone at small fillings," Biophys. Review and Letters, Vol. 11, No. 4, 139-147, 2016.
doi:10.1142/S1793048016500028

7. Vardevanyan, P. O., A. P. Antonyan, M. A. Shahinyan, and M. S. Mikaelyan, "Influence of millimeter electromagnetic waves on fluorescence of water-saline solutions of Human Serum Albumin," J. of Applied Spectroscopy, Vol. 83, No. 3, 496-499, 2016.
doi:10.1007/s10812-016-0316-z

8. Shenberg, A. S., M. G. Uzbekov, S. N. Shihov, A. S. Bazyan, and G. M. Chernyako, "Some neyrotrop effects of low intensity electromagnetic waves on the rats with different typological pecularities of the highest neural activity," Journal of the Highest Neural Activity, Vol. 50, 867-877, 2000.

9. Minasyan, S. M., G. Y. Grigoryan, S. G. Saakyan, A. A. Akhumyan, and V. P. Kalantaryan, "Effects of the action of microwave-frequency electromagnetic radiation on the spike activity of neurons in the supraoptic nucleus of the Hypothalamus in rats," Neuroscience and Behavioral Physiology, Vol. 37, No. 2, 175-180, 2007.
doi:10.1007/s11055-007-0165-6

10. Kalantaryan, V., R. Martirosyan, Yu. Babayan, and P. Vardevanyan, "Influence of nonionizing millimeter electromagnetic radiation on tumor and healthy DNA," Physica Medica, Vol. 52, suppl. 1, 1-2, 2018.

11. Kalantaryan, V. P., S. N. Hakobyan, and P. O. Vardevanyan, "Effect of weak electromagnetic waves on thermal properties of biomolecule water solutions," J. of Contemporary Physics, Vol. 53, No. 2, 231-235, 2018.
doi:10.3103/S106833721802010X

12. Hakobyan, S. N., V. P. Kalantaryan, and Yu. S. Babayan, "Effect of non-thermal millimeter electromagnetic radiation on thermodynamic parameters of the binding of ligands with DNA," Biol. J. Armenia, Vol. 70, No. 1, 22-27, 2018.

13. Logani, M. K., I. Szabo, V. R. Makar, A. Bhanushali, S. I. Alekseev, and M. C. Ziskin, "Effect of millimeter wave irradiation on tumor metastasis," Bioelectromagnetics, Vol. 27, 258-264, 2006.
doi:10.1002/bem.20208

14. Barbault, A., F. Costa, B. Bottger, R. Munden, F. Bomholt, N. Kuster, et al. "Amplitude-modulated electromagnetic fields for the treatment of cancer: Discovery of tumor-specific frequencies and assessment of a novel therapeutic approach," J. Exp. Clin. Cancer Res., Vol. 28, No. 1, 51-60, Apr. 2009.
doi:10.1186/1756-9966-28-51

15. Costa, F. P., A. C. de Oliveira, R. Meirelles, M. C. Machado, T. Zanesco, R. Surjan, et al. "Treatment of advanced hepatocellular carcinoma with very low levels of amplitude-modulated electromagnetic fields," Br. J. Cancer, Vol. 105, No. 5, 640-648, Aug. 2011.
doi:10.1038/bjc.2011.292

16. Zimmerman, J. W., M. J. Pennison, I. Brezovich, N. Yi, C. T. Yang, R. Ramaker, et al. "Cancer cell proliferation is inhibited by specific modulation frequencies," Br. J. Cancer, Vol. 106, No. 2, 307-313, Jan. 2012.
doi:10.1038/bjc.2011.523

17. Makar, V. R., M. K. Logani, A. Bhanushali, S. I. Alekseev, and M. C. Ziskin, "Effect of cyclophosphamide and 61.22 GHz millimeter waves on T-cell, B-cell,and macrophage functions," Bioelectromagnetics, Vol. 27, 458-466, 2006.
doi:10.1002/bem.20230

18. Logani, M. K., A. Bhanushali, A. Anga, A. Majmundar, I. Szabo, and M. C. Ziskin, "Combined millimeter wave and cyclophosphamide therapy of an experimental murine melanoma," Bioelectromagnetics, Vol. 25, 516-523, 2004.
doi:10.1002/bem.20026

19. Caravalho, C., R. X. Santos, and S. Cardoso, "Doxorubicin: The good, the bad and the ugly effect," Current Medicinal Chemistry, Vol. 16, No. 25, 3267-3285, 2009.
doi:10.2174/092986709788803312

20. Airodi, M., G. Bazone, G. Gennaro, A. M. Giuliani, and M. Giustini, "Interaction of Doxorubicin with polynucleotides. A spectroscopic study," Biochemistry, Vol. 53, 2197-2207, 2014.
doi:10.1021/bi401687v

21. Perez-Arnaiz, C., N. Busto, J. M. Leal, and B. Garcia, "New insights into the mechanism of the DNA/Doxorubicin interaction," J. Phys. Chem. B, Vol. 118, No. 5, 1288-1295, 2014.
doi:10.1021/jp411429g

22. Jawad, B., L. Pouldel, R. Polgornik, N. F. Steinmetz, and W. Ching, "Molecular mechanism and binding free energy of doxorubicin interaction in DNA," Phys. Chem. Chem. Phys., Vol. 21, 3877-3893, 2019.
doi:10.1039/C8CP06776G

23. Tartakoff, S. S., J. M. Finan, E. J. Curtis, H. M. Anchukaitis, D. J. Couture, and S. Glazier, "Investigation into DNA-binding mode of doxorubicin," Organic Biomolecular Chemistry, Vol. 17, 1992-1998, 2019.
doi:10.1039/C8OB02344A

24. Gharibyan, J. V., L. E. Nersesyan, and Yu. S. Babayan, "Combined influence of millimeter waves with antitumor drug doxorubicin on structure of tumor DNA," Science-medical J., Vol. 3, 28-33, 2006.

25. Partha, M. D. and S. Rakesh, "DNA methylation and cancer," J. Clinical Oncology, Vol. 22, No. 22, 4632-4642, 2004.
doi:10.1200/JCO.2004.07.151

26. Kalantaryan, V., R. Martirosyan, L. Nersesyan, A. Aharonyan, I. Danielyan, H. Stepanyan, J. Gharibyan, and N. Khudaverdyan, "Effect on tumoral cells of low intensity electromagnetic waves," Progress In Electromagnetics Research Letters, Vol. 20, 98-105, 2011.

27. Babayan, Yu. S. and J. V. Gharibyan, "Structural peculiarities of tumor DNA of sarcoma 45," Biofizica, Vol. 35, No. 4, 592-596, 1990.

28. Babayan, Yu. S., V. P. Kalantaryan, R. S. Ghazaryan, M. A. Parsadanyan, and P. O. Vardevanyan, "The influence of low energy millimeter electromagnetic waves on the stability of DNA molecules in solution," Biofizica, Vol. 52, No. 2, 382-384, 2007.

29. Rodionov, B. N., "Energo-informational effect of low-energetic electromagnetic radiations on biological objects," New Medical Technologies Report, Vol. 6, No. 3-4, 24-29, 1999.

30. Babayan, Yu. S., A. A. Tadevosyan, G. L. Kanaryan, V. P. Kalantaryan, and P. O. Vardevanyan, "The influence of coherent electromagnetic waves of millimeter range on the properties of the DNA solutions," Biomedicine Radioengineering, Vol. 2, 52-57, 2009.

31. Parker, B. S., A. Rephaeli, A. Nudelman, D. K. Phillips, and S. M. Cutts, "Formation of mitoxantrone adducts in human tumor cells: Potentiation by AN-9 and DNA methylation," Oncology Research, Vol. 14, No. 6, 279-290, 2009.
doi:10.3727/096504003773994815

32. Mc Ghee, J. D. and P. H. von Hippel, "Theoretical aspects of DNA-protein interactions: Cooperative and non-cooperative binding of large ligands to one dimensional homogeneous lattice," J. Mol. Biol., Vol. 84, No. 3, 469-489, 1974.
doi:10.1016/0022-2836(74)90031-X