Vol. 4
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-08-07
A New Ultra-Wideband Beamforming for Wireless Communications in Underground Mines
By
Progress In Electromagnetics Research M, Vol. 4, 1-21, 2008
Abstract
Abstract-In this paper, a novel ultra-wideband switched-beam antenna system based on 4×4 two-layer Butler matrix is presented and implemented to be used in hostile environment, such as underground mines. This matrix is based on the combination of a broadband twolayer slot-coupled directional coupler and a multilayer slot-coupled microstrip transition. With this configuration, the proposed matrix was designed without using any crossovers as used in conventional Butler matrices. Moreover, this new structure is compact and offers an ultra-wide bandwidth of 6 GHz. To examine the performance of the proposed matrix, experimental prototypes of the multilayer microstrip transition and the Butler matrix were fabricated and measured. Furthermore, a three 4-antenna arrays were also designed, fabricated and then connected to the matrix to form a beamforming antenna system at 3, 5.8 and 6 GHz. As a result, four orthogonal beams are produced in the band 3-9 GHz. This matrix is suitable for ultrawideband communication systems in confined areas.
Citation
Mourad Nedil Tayeb Denidni Azzeddine Djaiz Mohamed Adnane Habib , "A New Ultra-Wideband Beamforming for Wireless Communications in Underground Mines," Progress In Electromagnetics Research M, Vol. 4, 1-21, 2008.
doi:10.2528/PIERM08070207
http://www.jpier.org/PIERM/pier.php?paper=08070207
References

1. Nerguizian, C., C. Despins, S. Affes, and M. Djadel, "Radiochannel characterization of an underground mine at 2.4 GHz wireless communication," IEEE Trans. on Wireless Commun., Vol. 4, No. 5, 2441-2453, Sep. 2005.
doi:10.1109/TWC.2005.853899

2. Chao, R. Y. and K. S. Chung, "A low profile antenna array for underground mine communication," Proc. of ICCS'94, Vol. 2, 705-709, 1994.
doi:10.1109/ICCS.1994.474139

3. Dessouky, M. I., H. A. Sharshar, and Y. A. Albagory, "Improving the cellular coverage from a high altitude platform by novel tapered beamforming technique," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1721-1731, 2007.

4. Jeong, Y.-S. and J.-H. Lee, "Estimation of time delay using conventional beamforming-based algorithm for UWB systems," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2413-2420, 2007.
doi:10.1163/156939307783134281

5. Winter, J. H., "Smart antennas for wireless systems," IEEE Personal Communications, Vol. 1, 23-27, Feb. 1998.
doi:10.1109/98.656155

6. Fakoukakis, F. E., S. G. Diamantis, A. P. Orfanides, and G. A. Kyriacou, "Development of an adaptive and a switched beam smart antenna system for wireless communications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 3, 399-408, 2006.
doi:10.1163/156939306775701722

7. Ho, M.-J., G. L. Stuber, and M. Austin, "Performance of switchedbeam smart antennas, for cellular radio systems," IEEE Trans. Veh. Technol., Vol. 47, No. 1, 10-19, Feb. 1998.
doi:10.1109/25.661027

8. Mitilineos, S. A., S. C. Thomopoulos, and C. Capsalis, "Genetic design of dual-band, switched-beam dipole arrays, with elements failure correction, retaining constant excitation coefficients," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 1925-1942, 2006.
doi:10.1163/156939306779322738

9. Khani, H. and P. Azmi, "Performance analysis of a high data rate UWB-DTR system in dense multipath channels," Progress In Electromagnetics Research B, Vol. 5, 119-131, 2008.
doi:10.2528/PIERB08021003

10. El-Fishawy, N. A., M. Shokair, and W. Saad, "Proposed MAC protocol versus IEEE 802.15.3a for multimedia transmission over UWB networks," Progress In Electromagnetics Research B, Vol. 2, 189-206, 2008.
doi:10.2528/PIERB07111812

11. Xiao, S.-Q., J. Chen, X.-F. Liu, and B.-Z.Wang, "Spatial focusing characteristics of time reversal UWB pulse transmission with different antenna arrays," Progress In Electromagnetics Research B, Vol. 2, 223-232, 2008.
doi:10.2528/PIERB07112203

12. Naghshvarian-Jahromi, M. and M. Tayarani, "Miniature planar UWB bandpass filters with circular slots in ground," Progress In Electromagnetics Research Letters, Vol. 3, 87-93, 2008.
doi:10.2528/PIERL08020902

13. Yin, X.-C., C.-L. Ruan, C.-Y. Ding, and J.-H. Chu, "A planar U type monopole antenna for UWB applications," Progress In Electromagnetics Research Letters, Vol. 2, 1-10, 2008.
doi:10.2528/PIERL07121405

14. Naghshvarian-Jahromi, M., "Compact UWB bandnotch antenna with transmission-line-FED," Progress In Electromagnetics Research B, Vol. 3, 283-293, 2008.
doi:10.2528/PIERB07121407

15. Koo, B.-W., M.-S. Baek, and H.-K. Song, "Multiple antenna transmission technique for UWB system," Progress In Electromagnetics Research Letters, Vol. 2, 177-185, 2008.
doi:10.2528/PIERL08011101

16. Porcino, D. and W. Hirt, "Ultra-wideband radio technology: Potential and challenges ahead," IEEE Comm. Mag., Vol. 4, No. 7, 66-74, July 2003.

17. Dogandzic, A., J. Riba, G. Seco, and A. L. Swindlehurst, "Positioning and navigation with applications to communications," IEEE Signal Proc. Magazine, Vol. 22, 10-11, July 2005.

18. Corona, A. and M. J. Lancaster, "A high-temperature superconducting superconducting," IEEE Trans. on Applied Superconductivity, Vol. 13, No. 4, Dec. 2003.
doi:10.1109/TASC.2003.820507

19. He, J., B.-Z. Wang, Q.-Q. He, Y.-X. Xing, and Z.-L. Yin, "Wideband X-band microstrip Butler matrix," Progress In Electromagnetics Research, Vol. 74, 131-140, 2007.
doi:10.2528/PIER07042302

20. Tudosie, G., H. Barth, and R. Vahldieck, "A compact LTCC Butler matrix realization for phased array applications," IEEE MTT-S Int. Microwave Symposium Digest, 441-444, June 2006.
doi:10.1109/MWSYM.2006.249586

21. Bona, M., L. Manholm, J. P. Satarski, and B. Svensson, "Low-loss compact Butler matrix for a microstrip antenna," IEEE Trans. on Microwave Theory and Tech., Vol. 50, No. 9, Sep. 2002.
doi:10.1109/TMTT.2002.802318

22. Wincza, K. and S. Gruszczynski, A broadband 4/spl times/4 Butler matrix for modern-day antennas, European Microwave Conference, Vol. 2, 4, Oct. 2005.

23. Macnamara, T. M., "Position and magnitudes of fixed phase shifters in Butler matrices incorporation 90◦ hybrids," IEE Proceedings, Vol. 135, No. 5, Oct. 1988.

24., IE3D 8.2, Zeland Software, Inc. Fremont, CA.

25. Tanaka, T., K. Tsunoda, and M. Aikawa, "Slot-coupled directional couplers between double-sided substrate microstrip lines and their applications ," IEEE Trans. Microwave Theory Tech., Vol. 36, 1752-1757, Dec. 1988.
doi:10.1109/22.17410

26. Lim, C. and S. Uysal, "Design of a broadband directional coupler using microstrip-like multilayer technology," Microwave and Optical Technol. Lett., Vol. 23, 273-275, Dec. 1999.
doi:10.1002/(SICI)1098-2760(19991205)23:5<273::AID-MOP4>3.0.CO;2-H

27. Warns, C., W. Menzel, and H. Schumacher, "Transmission lines and passive elements for multilayer coplanar circuits on silicon," IEEE Trans. Microw. Theory Tech., Vol. 46, No. 5, 616-622, May 1998.
doi:10.1109/22.668672

28. Theodorou, A. and N. Uzunoglu, "Transition properties of a vertical conductor connecting two microstrip lines at different planes," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 5, 1162-1172, May 1995.
doi:10.1109/22.382080

29. Chen, C., M. Tsai, and G. Alexopoulos, "Optimization of aperture transitions for multiport microstrip circuits," IEEE Trans. Microw. Theory Tech., Vol. 44, No. 12, 2457-2465, Dec. 1996.
doi:10.1109/22.554578

30. Tran, A. M. and T. Itoh, "Analysis of microstrip lines coupled through an arbitrarily shaped aperture in a thick common ground plane ," IEEE MTT-S Symposium Digest, Vol. 3, 819-822, Atlanta, 1993.

31. Ivanov, T. and A. Mortazawi, "Two stage double layer microstrip spatial amplifiers," IEEE MTT-S Symposium Digest, Vol. 2, 589-592, Atlanta, May 1995.

32. Burke, J. J. and R. W. Jackson, "Surface-to-surface transition via electromagnetic coupling of microstrip and coplanar waveguide," IEEE Trans. Microwave Theory Tech., Vol. 37, 519-525, Mar. 1989.
doi:10.1109/22.21623

33. Zhu, L. and K. Wu, "Ultrabroad-band vertical transition for multilayer integrated circuits," IEEE Microw. Guided Wave Lett., Vol. 9, No. 11, 453-455, Nov. 1999.
doi:10.1109/75.808032

34. Nedil, M., A. T. Denidni, and L. Talbi, "Novel Butler matrix using CPW multilayer technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 1, 499-507, Jan. 2006.
doi:10.1109/TMTT.2005.860490

35. Nedil, M., A. T. Denidni, and L. Talbi, Design of a broadband slot antenna fed by CPW for wireless application at 5.8 GHz, IEEE Vehicular Technology Conf., VTC2004-Spring, Vol. 1, 18-21, 2004.

36. Watanabe, K., J. Ishihara, and K. Yasumoto, "Coupled-mode analysis of a gating-assisted directional coupler using singular perturbation technique ," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 12, 1681-1682, 1999.
doi:10.1163/156939399X00114

37. Denidni, T. A. and T. E. Libar, "Wide band four-port Butler matrix for switched multibeam antenna arrays," IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, 2461-2463, Sep. 2003.
doi:10.1109/PIMRC.2003.1259161

38. Sharma, R., T. Chakravarty, S. Bhooshan, and A. B. Bhattacharyya, "Design of a novel 3 dB microstrip backward wave coupler using defected ground structure," Progress In Electromagnetics Research, Vol. 65, 261-273, 2006.
doi:10.2528/PIER06100502

39. Wu, J.-J., "A multimode interference coupler with exponentially tapered waveguide," Progress In Electromagnetics Research C, Vol. 1, 113-122, 2008.
doi:10.2528/PIERC08012406

40. Dall'Omo, C., T. Monediere, B. Jeko, F. Lamour, I. Wolk, and M. Elkael, "Design and realization of a 4×4 microstrip butler matrix without any crossing in millimeter-wave," Microwave and Optical Tech. Lett., Vol. 38, No. 6, Sep. 2003.
doi:10.1002/mop.11090

41. Stutzman, W. L. and G. A. Thiele, Antenna Theory and Design, 2nd Ed., John Wiley & Sons, Inc., 1998.

42. Wong, M. F., V. F. Hanna, O. Picon, and H. Baudrand, "A novel coplanar-waveguide directional coupler with finite-extent backed conductor ," IEEE Trans. on Microwave. Theory and Tech., Vol. 12, 2123-2129, Dec. 1991.
doi:10.1109/22.106554