Vol. 6

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2009-03-04

Crack Detection Using a Hybrid Finite Difference Frequency Domain and Particle Swarm Optimization Techniques

By Saber Zainud-Deen, Walaa Hassan, and Kamal Awadalla
Progress In Electromagnetics Research M, Vol. 6, 47-58, 2009
doi:10.2528/PIERM09012404

Abstract

A hybrid technique based on finite-difference frequency domain (FDFD) and particle swarm optimization (PSO) techniques is proposed to reconstruct the angular crack width and its position in the conductor and ability to detect the crack width, position, and its depth in single and multilayer dielectric objects. FDFD is formulated to calculate the scattered field after illuminating the object by a microwave transmitter. Two-dimensional model for the object is used. Computer simulations have been performed by means of a numerical program; results show the capabilities of the proposed approach. This paper presents a computational approach to the two dimensional inverse scattering problem based on FDFD method and PSO technique to determine the crack position, width and depth. By using the scattered field, the specifications of the crack are reconstructed.

Citation


Saber Zainud-Deen, Walaa Hassan, and Kamal Awadalla, "Crack Detection Using a Hybrid Finite Difference Frequency Domain and Particle Swarm Optimization Techniques," Progress In Electromagnetics Research M, Vol. 6, 47-58, 2009.
doi:10.2528/PIERM09012404
http://www.jpier.org/PIERM/pier.php?paper=09012404

References


    1. Sekiguchi, H. and H. Shirai, "A simple estimation formula for a crack depth using the RCS dip," Proc. IEEE AP-S Int. Conf., Vol. 3, 220-223, Columbus, OH, USA, Jun. 2003.

    2. Qing, A., C. K. Lee, and L. Jen, "Electromagnetic inverse scattering of two-dimensional perfectly conducting objects by real-coded genetic alogrithm ," IEEE Trans. Geoscience and Remote Sensing, Vol. 39, No. 3, 665-676, Mar. 2001.
    doi:10.1109/36.911123

    3. Zainud-Deen, S. H., M. S. Ibrahim, and E. M. Ali, "A hybrid finite difference frequency domain and particle swarm optimization techniques for forward and inverse electromagnetic scattering problems," The 23rd Annual Review of Progress in Applied Computational Electromagnetics, 1575-1580, Verona, Italy, Mar. 2007.

    4. Zainud-Deen, S. H., W. M. Hassen, E. M. Ali, K. H. Awadalla, and H. A. Sharshar, "Breast cancer detection using a finite difference frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.
    doi:10.2528/PIERB07112703

    5. Souvorov, A. E., A. E. Bulyshev, S. Y. Semenov, R. H. Svenson, A. G. Nazarov, Y. E. Sizov, and G. P. Tatsis, "Microwave tomography: A two-dimensional Newton iterative scheme," IEEE Trans. Microw. Theory Tech., Vol. 46, 1654-1659, Nov. 1998.

    6. Chew, W. C. and Y. M. Wang, "Reconstruction of two-dimensional permittivity distribution using the distorted born iterative method," IEEE Trans. Med. Imag., Vol. 9, 218-225, Jun. 1990.
    doi:10.1109/42.56334

    7. Caorsi, S., A. Massa, M. Pastorino, and A. Rosani, "Microwave medical imaging: Potentialities and limitations of a stochastic optimization technique ," IEEE Trans. Microw. Theory Tech., Vol. 52, 1909-1916, 2004.
    doi:10.1109/TMTT.2004.832016

    8. Xiao, F. and H. Yabe, "Microwave imaging of perfect conducting cylinders from real data by micro genetic algorithm coupled with deterministic method," IEICE Trans. Electron., Vol. E81-C, 1784-1792, 1998.

    9. Yee, K. S., "Numerical solution of initial boundary value problems using Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 5, 302-307, May 1966.

    10. Al Sharkawy, M. H., V. Demir, and A. Z. Elsherbeni, "Plane wave scattering from three dimensional multiple objects using the iterative multiregion technique based on the FDFD method," IEEE Trans. Antennas Propag., Vol. 54, No. 2, 666-673, Feb. 2006.
    doi:10.1109/TAP.2005.863129

    11. Zainud-Deen, S. H., E. El-Deen, and M. S. Ibrahem, "Electro-magnetic scattering by conducting/dielectric objects," The 23rd Annual Review of Progress in Applied Computational Electromagnetics, 1866-1871, Verona, Italy, Mar. 2007.

    12. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Trans. Antennas Propag., Vol. 52, No. 2, 397-407, Feb. 2004.
    doi:10.1109/TAP.2004.823969

    13. Jin, N. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binary, signalobjective and multiobjective implementations," IEEE Trans. Antennas Propag., Vol. 55, No. 3, 556-567, Mar. 2007.
    doi:10.1109/TAP.2007.891552

    14. Noh, Y. C. and S. D. Choi, "TM scattering from hollow slotted circular cylinder with thickness," IEEE Trans. Antennas Propag., Vol. 45, No. 5, 909-910, May 1997.
    doi:10.1109/8.575647

    15. Jankovic, D., M. Labelle, D. C. Chang, J. M. Dunn, and R. C. Booton, "A hybrid method for the solution of scattering from inhomogenouse dielectric cylinders of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 42, 1215-1222, Sep. 1994.
    doi:10.1109/8.318642