Vol. 41

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2015-02-19

Electrical Capacitance Volume Tomography: a Comparison Between 12- and 24-Channels Sensor Systems

By Aining Wang, Qussai M. Marashdeh, Fernando Lisboa Teixeira, and Liang-Shih Fan
Progress In Electromagnetics Research M, Vol. 41, 73-84, 2015
doi:10.2528/PIERM15011412

Abstract

Spatial resolution represents akey performance aspect in electrical capacitance volume tomography (ECVT). Factors affecting the resolution include the ``soft-field'' nature of ECVT, the number of capacitance channels used, the ill-conditioned nature of the imaging reconstruction problem, and the signal-to-noise ratio of the measurement apparatus. In this study, the effect of choosing different numbers of capacitance plates on the performance of ECVT is investigated. Specifically, two ECVT sensors with 12 and 24 capacitance channels but covering equal volumes of a cylinder are used to examine the resulting impact on the image resolution.

Citation


Aining Wang, Qussai M. Marashdeh, Fernando Lisboa Teixeira, and Liang-Shih Fan, "Electrical Capacitance Volume Tomography: a Comparison Between 12- and 24-Channels Sensor Systems," Progress In Electromagnetics Research M, Vol. 41, 73-84, 2015.
doi:10.2528/PIERM15011412
http://www.jpier.org/PIERM/pier.php?paper=15011412

References


    1. Wang, H. and W. Yang, "Scale-up of an electrical capacitance tomography sensor for imaging pharmaceutical fluidized beds and validation by computational fluid dynamics," Meas. Sci. Technol., Vol. 22, No. 10, 104015, 2011.
    doi:10.1088/0957-0233/22/10/104015

    2. Yang, D. Y., B. Zhou, C. L. Xu, and S. M. Wang, "Thick-wall electrical capacitance tomography and its application in dense-phase pneumatic conveying under high pressure," IET Image Proc., Vol. 5, No. 5, 513-522, 2011.
    doi:10.1049/iet-ipr.2009.0209

    3. Rimpiläinen, V., S. Poutiainen, L. M. Heikkinen, T. Savolainen, M. Vauhkonen, and J. Ketolainen, "Electrical capacitance tomography as a monitoring tool for high-shear mixing and granulation," Chem. Eng. Sci., Vol. 66, No. 18, 4090-4100, 2011.
    doi:10.1016/j.ces.2011.05.044

    4. Chandrasekera, T. C., A. Wang, D. J. Holland, Q. Marashdeh, M. Pore, F. Wang, A. J. Sederman, L. S. Fan, L. F. Gladden, and J. S. Dennis, "A comparison of magnetic resonance imaging and electrical capacitance tomography: An air jet through a bed of particles," Powder Technol., Vol. 227, 86-95, 2012.
    doi:10.1016/j.powtec.2012.03.005

    5. Warsito, W., Q. Marashdeh, and L. S. Fan, "Electrical capacitance volume tomography," IEEE Sensors J., Vol. 7, No. 4, 525-535, 2007.
    doi:10.1109/JSEN.2007.891952

    6. Wang, F., Q. Marashdeh, L. S. Fan, and W. Warsito, "Electrical capacitance volume tomography: Design and applications," Sensors, Vol. 10, 1890-1917, 2010.
    doi:10.3390/s100301890

    7. Wang, F., Q. Marashdeh, A. Wang, and L. S. Fan, "Electrical capacitance volume tomography imaging of three-dimensional flow structures and solids concentration distributions in a riser and a bend of a gas-solid circulating fluidized bed," Ind. & Eng. Chem. Res., Vol. 51, 10968-10976, 2012.
    doi:10.1021/ie300746q

    8. Pore, M., T. C. Chandrasekera, D. J. Holland, A. Wang, F. Wang, Q. Marashdeh, M. D. Mantle, A. J. Sederman, L.-S. Fan, L. F. Gladdena, and J. S. Dennis, "Magnetic resonance studies of jets in a gas-solid fluidised bed," Particuology, Vol. 10, 161-169, 2012.
    doi:10.1016/j.partic.2011.10.005

    9. Marashdeh, Q., W. Warsito, L.-S. Fan, and F. L. Teixeira, "Non-linear image reconstruction technique for ECT using a combined neural network approach," Meas. Sci. Technol., Vol. 17, No. 8, 2097-2103, 2006.
    doi:10.1088/0957-0233/17/8/007

    10. Soleimani, M., P. K. Yalavarthy, and H. Dehghani, "Helmholtz-type regularization method for permittivity reconstruction using experimental phantom data of electrical capacitance tomography," IEEE Tran. Instr. Meas., Vol. 59, No. 1, 78-83, 2010.
    doi:10.1109/TIM.2009.2021645

    11. Lei, J., S. Liu, H. H. Guo, Z. H. Li, J. T. Li, and Z. X. Han, "An image reconstruction algorithm based on the semiparametric model for electrical capacitance tomography," Comp. Math. Appl., Vol. 61, No. 9, 2843-2853, 2011.
    doi:10.1016/j.camwa.2011.03.060

    12. Cao, Z., L. Xu, and H.Wang, "Image reconstruction technique of electrical capacitance tomography for low-contrast dielectrics using Calderon’s method," Meas. Sci. Technol., Vol. 20, No. 10, 2009.
    doi:10.1088/0957-0233/20/10/104027

    13. Yang, W., "Design of electrical capacitance tomography sensors," Meas. Sci. Technol., Vol. 21, No. 4, 042001, 2010.
    doi:10.1088/0957-0233/21/4/042001

    14. Peng, L., J. Ye, G. Lu, and W. Yang, "Evaluation of effect of number of electrodes in ECT sensors on image quality," IEEE Sensors J., Vol. 12, No. 5, 1554-1565, 2012.

    15. Warsito, W. and L. S. Fan, "Neural network multi-criteria optimization image reconstruction technique (NN-MOIRT) for linear and non-linear process tomography," Chem. Eng. Proc., Vol. 42, 663-674, 2003.
    doi:10.1016/S0255-2701(02)00204-0

    16. Marashdeh, Q. and F. L. Teixeira, "Sensitivity matrix calculation for fast electrical capacitance tomography (ECT) of flow systems," IEEE Trans. Magn., Vol. 40, No. 2, 1204-1207, 2004.
    doi:10.1109/TMAG.2004.825039

    17. Marashdeh, Q., W. Warsito, L.-S. Fan, and F. L. Teixeira, "Nonlinear forward problem solution for electrical capacitance tomography using feed forward neural network," IEEE Sensors J., Vol. 6, No. 2, 441-449, 2006.
    doi:10.1109/JSEN.2005.860316

    18. Yates, J. G., D. J. Cheesman, and Y. A. Sergeev, "Experimental observations of voidage distribution around bubbles in a fluidized bed," Chem. Eng. Sci., Vol. 49, 1885-1895, 1994.
    doi:10.1016/0009-2509(94)80073-1

    19. Bhaga, D. and M. E. Weber, "Bubbles in viscous liquids: Shapes, wakes and velocities," J. Fluid Mech., Vol. 105, 61-85, 1981.
    doi:10.1017/S002211208100311X

    20. Marashdeh, Q. M., F. L. Teixeira, and L.-S. Fan, "Adaptive electrical capacitance volume tomography," IEEE Sensors J., Vol. 14, No. 4, 1253-1259, 2014.
    doi:10.1109/JSEN.2013.2294533

    21. Zeeshan, F., L. Teixeira, and Q. Marashdeh, "Sensitivity map computation in adaptive electrical capacitance volume tomography with multielectrode excitations," Electron. Lett., Vol. 51, No. 4, 334-336, 2015.
    doi:10.1049/el.2014.3855

    22. Marashdeh, Q., W. Warsito, L.-S. Fan, and F. L. Teixeira, "A multimodal tomography system based on ECT sensors," IEEE Sensors J., Vol. 7, No. 3, 426-433, 2007.
    doi:10.1109/JSEN.2006.890149

    23. Marashdeh, Q., W. Warsito, L.-S. Fan, and F. L. Teixeira, "Dual imaging modality of granular flow based on ECT sensors," Granular Matter, Vol. 10, No. 2, 75-80, 2008.
    doi:10.1007/s10035-007-0070-2