Vol. 60
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-09-09
Equivalent Circuit Analysis of Artificial Dielectric Layers
By
Progress In Electromagnetics Research M, Vol. 60, 85-92, 2017
Abstract
On the basis of equivalent circuit analysis, we investigated the electromagnetic characteristics of artificial dielectric layers (ADLs) having arrays of square metal patches for the normal incidence of plane waves, where the electromagnetic wavelength ranges from p/10 to p/2 (p: period). A good agreement was obtained between measured and calculated S parameters and electromagnetic parameters (permittivity and permeability) for a fabricated ADL except at around 5.2 and 9.2 GHz. A possible cause of the discrepancy between the measured and calculated electromagnetic characteristics is discussed by investigating the electromagnetic wave propagating along the surface of the ADL. Applications of the equivalent circuit analysis to ADLs with other geometries are also discussed.
Citation
Eiichi Sano Masayuki Ikebe , "Equivalent Circuit Analysis of Artificial Dielectric Layers," Progress In Electromagnetics Research M, Vol. 60, 85-92, 2017.
doi:10.2528/PIERM17042801
http://www.jpier.org/PIERM/pier.php?paper=17042801
References

1. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

2. Kock, W. E., "Metal-lens antennas," Proceedings of the IRE, Vol. 34, 828-836, 1946.
doi:10.1109/JRPROC.1946.232264

3. Awai, I., H. Kubo, T. Iribe, D. Wakamiya, and A. Sanada, "An artificial dielectric material of huge permittivity with novel anisotropy and its application to a microwave BPF," IEEE MTT-S Digest, Vol. 1, 301-304, Philadelphia, 2003.

4. Huang, D., T. La Rocca, and M.-C. F. Chang, "Low phase noise millimetre-wave frequency generation using embedded artificial dielectric," Electronics Letters, Vol. 43, No. 18, 983-984, 2007.
doi:10.1049/el:20071485

5. Ma, Y., B. Rejaei, and Y. Zhuang, "Artificial dielectric shields for integrated transmission lines," IEEE Microwave and Wireless Component Letters, Vol. 18, No. 7, 431-433, 2008.
doi:10.1109/LMWC.2008.924907

6. Ma, Y., B. Rejaei, and Y. Zhuang, "Low-loss on-chip transmission lines with micro-patterned artificial dielectric shields," Electronics Letters, Vol. 44, No. 15, 913-914, 2008.
doi:10.1049/el:20081324

7. Takahagi, K. and E. Sano, "High-gain silicon on-chip antenna with artificial dielectric layer," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 10, 3624-3629, 2011.
doi:10.1109/TAP.2011.2163758

8. Syed, W. H. and A. Neto, "Front to back ratio enhancement of planar printed antennas by means of artificial dielectric layers," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 11, 5408-5416, 2013.
doi:10.1109/TAP.2013.2275915

9. Peuzin, J. C. and J. C. Gay, "Demonstration of the waveguiding properties of an artificial surface reactance," IEEE Transactions on Microwave Theory and Technology, Vol. 42, No. 9, 1695-1699, 1994.
doi:10.1109/22.310564

10. Cavallo, D., W. H. Syed, and A. Neto, "Closed-form analysis of artificial dielectric layers - Part I: Properties of a single layer under plane-wave incidence," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 12, 6256-6264, 2014.
doi:10.1109/TAP.2014.2365233

11. Barzegar-Parizi, S. and B. Rejaei, "Calculation of effective parameters of high permittivity integrated artificial dielectrics," IET Microwaves, Antennas & Propagation, Vol. 9, No. 12, 1287-1296, 2015.
doi:10.1049/iet-map.2014.0377

12. Luukkonen, O., C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Raisanen, and S. A. Tretyakov, "Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1624-1632, 2008.
doi:10.1109/TAP.2008.923327

13. http://www.keysight.com/upload/cmc upload/All/FreeSpaceSeminarRev2.pdf.

14. Mosallaei, H. and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 9, 2403-2414, 2004.
doi:10.1109/TAP.2004.834135

15. Pozar, D. M., Microwave Engineering, 2nd Ed., John Wiley and Sons, Hoboken, NJ, 1998.

16. Smith, D. R., S. Schultz, P. Marko, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B, Vol. 65, 195104, 2002.
doi:10.1103/PhysRevB.65.195104

17. Collin, R. E., Foundations for Microwave Engineering, 2nd Ed., McGraw-Hill, New York, NY, 1992.