Vol. 59
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-08-05
A Corrected Method to Extract Dielectric Parameters from Transmission Lines with Conductor Surface Roughness at Terahertz Frequencies
By
Progress In Electromagnetics Research M, Vol. 59, 75-83, 2017
Abstract
``Curve-fitting'' method is an important method to extract dielectric parameters of substrate materials from planar transmission lines. At gigahertz frequencies, effective conductivity concept is adopted to model the conductor's surface roughness effects in planar transmission lines, and differential extrapolation method is used to remove surface roughness effects. However, such a concept and method lose their accuracy at extremely high frequency such as terahertz waves. This paper details some new limitations in the terahertz regime and proposes corrections in calculating effective conductivity with rough conductor and curve-fitting method for transmission performance characterization in eliminating the effects of surface roughness. The proposed method is validated by simulation data for conductivity with parallel plate waveguide model, and the corrected method presented here can effectively extract dielectric parameters with an error less than 7% .
Citation
Bin-Ke Huang Qi Jia Xubing Wang , "A Corrected Method to Extract Dielectric Parameters from Transmission Lines with Conductor Surface Roughness at Terahertz Frequencies," Progress In Electromagnetics Research M, Vol. 59, 75-83, 2017.
doi:10.2528/PIERM17051602
http://www.jpier.org/PIERM/pier.php?paper=17051602
References

1. Gold, G. and K. Helmreich, "Measuring design-DK and true permittivity of PCB materials up to 20 GHz," Microwave Conference, 154-157, IEEE, 2015.

2. Sheen, J., "Comparisons of microwave dielectric property measurements by transmission/reflection techniques and resonance techniques," Measurement Science and Technology, Vol. 20, No. 4, 042001, 2009.
doi:10.1088/0957-0233/20/4/042001

3. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, No. 8, 1096-1103, 1990.
doi:10.1109/22.57336

4. Stuchly, S. S., M. A. Rzepecka, and M. F. Iskander, "Permittivity measurements at microwave frequencies using lumped elements," IEEE Transactions on Instrumentation and Measurement, Vol. 23, No. 1, 56-62, 1974.
doi:10.1109/TIM.1974.4314218

5. Koul, A., et al., "Differential extrapolation method for separating dielectric and rough conductor losses in printed circuit boards," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 2, 421-433, 2012.
doi:10.1109/TEMC.2010.2087341

6. Zhang, J., et al., "Reconstruction of dispersive dielectric properties for PCB substrates using a genetic algorithm," IEEE Transactions on Electromagnetic Compatibility, Vol. 50, No. 3, 704-714, 2008.
doi:10.1109/TEMC.2008.927923

7. Huang, B.-K. and Q. Jia, "A method to extract dielectric parameters from transmission lines with conductor surface roughness at microwave frequencies," Progress In Electromagnetics Research M, Vol. 48, 1-8, 2016.
doi:10.2528/PIERM16030209

8. Gold, G. and K. Helmreich, "A physical model for skin effect in rough surfaces," Microwave Integrated Circuits Conference, Vol. 8267, No. 1, 631-634, 2012.

9. Koledintseva, M. and A. Rakov, "Elimination of conductor foil roughness effects in characterization of dielectric properties of printed circuit boards," Design Con. 2014: Where the Chip Meets the Board, January 28-31, 2014.

10. Yang, B. B., M. Kirley, and J. H. Booske, "Theoretical and empirical evaluation of surface roughness effects on conductivity in the terahertz regime," IEEE Transactions on Terahertz Science and Technology, Vol. 4, No. 3, 368-375, 2014.
doi:10.1109/TTHZ.2014.2310121

11. Pozar, D. M., Microwave Engineering, 4th Ed., Wiley, 2011.

12. Pollock, D. D., Physical Properties of Materials for Engineers, Taylor & Francis, 1993.