Vol. 59
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-08-17
Helmholtz Equation in Transverse Circular Representation
By
Progress In Electromagnetics Research M, Vol. 59, 161-170, 2017
Abstract
The use of transverse circular representation in circular cylinder coordinate system provides an alternative approach to the solution for vector Helmholtz partial differential equations (VH-PDE) of electromagnetics. After separation, VH-PDE for electric (magnetic) field splits into a set of three ordinary differential (Bessel) equations for two opposite transverse circular polarizations (TCP) and the axial component. The approach is suitable for solving the problem of cylindrical waveguides and cavities starting from the transverse fields. The coupling between TCP fields via the axial component affects nonreciprocal propagation in waveguides. The procedure is illustrated on a dielectric waveguide. It may be extended to the media with circular eigen polarizations including those displaying magnetooptical Faraday effect or optical activity.
Citation
Stefan Visnovsky , "Helmholtz Equation in Transverse Circular Representation," Progress In Electromagnetics Research M, Vol. 59, 161-170, 2017.
doi:10.2528/PIERM17052307
http://www.jpier.org/PIERM/pier.php?paper=17052307
References

1. Arfken, G. B. and H. J.Weber, Mathematical Methods for Physicists, Chaps. 2, 9 and 11, Academic Press, Elsevier, 2005.

2. Marcuse, D., Light Transmission Optics, Chap. 8, Van Nostrand Reinhold Company, 1972.

3. Marcuse, D., Theory of Dielectric Optical Waveguides, Chap. 1, Academic Press, 1974.

4. Snyder, A. W. and J. D. Love, Optical Waveguide Theory, Chapman and Hall, 1991.

5. Kong, J. A., Electromagnetic Wave Theory, Chap. 3, EMW Publishing, Cambridge, Massachusets, USA, 2000.

6. Goell, J. E., "A circular-harmonic computer analysis of rectangular dielectric waveguide," Bell Syst. Tech. J., Vol. 48, No. 9, 2133-2160, 1969.
doi:10.1002/j.1538-7305.1969.tb01168.x

7. Poladian, L., M. Straton, A. Docherty, and A. Argyros, "Pure chiral optical fibres," Opt. Express, Vol. 19, No. 2, 968-980, 2011.
doi:10.1364/OE.19.000968

8. Zhang, Z., J. Gan, X. Heng, Y. Wu, Q. Li, Q. Qian, D. Chen, and Z. Yang, "Optical fiber design with orbital angular momentum light purity higher than 99.9%," Opt. Express, Vol. 23, No. 23, 29331-29341, 2015.
doi:10.1364/OE.23.029331

9. Gloge, D., "Weakly guiding fibers," Appl. Opt., Vol. 10, No. 10, 2252-2258, 1971.
doi:10.1364/AO.10.002252

10. Snyder, A. W., "Understanding monomode optical fibers," Proc. IEEE, Vol. 69, No. 1, 6-13, 1981.
doi:10.1109/PROC.1981.11917

11. Chew, W. C., Waves and Fields in Inhomogeneous Media, Chap. 3, IEEE Press Series on Electromagnetic Waves, 1995.

12. Yoshino, T., "Theory for the Faraday effect in optical fiber," J. Opt. Soc. Am. B, Vol. 22, No. 9, 1856-1860, 2005.
doi:10.1364/JOSAB.22.001856